Outline

- Basics of probability
- Statistical estimation
- Bayes Nets
- Naïve Bayes
- Markov Nets (briefly, we will come back to this)
- Inference
- Learning
- Statistical Language Models

Inference: Variable Elimination

Doug Downey
Northwestern EECS 474 Fall 2016

Inference: Answering Queries

- Given:
- A probability model
- Subsets of random variables
- \boldsymbol{Y} (query) and
- E (evidence) with assignments \mathbf{e} to E
- Find $P(\boldsymbol{Y} \mid \boldsymbol{E}=\mathbf{e})$
- E.g.,
- $P($ Battery \mid Starts $=$ false $)$
- $\mathrm{P}($ Disease \mid Symptoms = e)
- P(StockMarketCrash | RecentPriceActivity = e)

What else can we do with queries?

- Prioritizing info gathering
- Which additional evidence would be most informative?
- Explanation
- Why do I need a new fan belt?
- Sensitivity Analysis
- Which variable values are most critical?

Gee, it's easy

- $P(\boldsymbol{Y} \mid E=\mathbf{e})=\frac{P(\boldsymbol{Y}, \mathbf{e})}{P(\mathbf{e})}$
- Given joint $\mathrm{P}(\boldsymbol{y}, \mathbf{e}, \boldsymbol{w})$, we can compute r.h.s. by summing out \mathbf{w}, \mathbf{y}

But...

- Naïve summing is costly

- $P(A, B, C, D)=P(A) P(B \mid A) P(C \mid B) P(D \mid C)$
- $\mathrm{P}(D)=\Sigma_{\mathrm{A}} \Sigma_{\mathrm{B}} \Sigma_{\mathrm{C}} \mathrm{P}(A) \mathrm{P}(B \mid A) \mathrm{P}(C \mid B) \mathrm{P}(D \mid C)$
- $2^{3}=8$ combinations, $8 * 3=24$ multiplications
- Exponential in \# of variables

Variable Elimination

Variable Elimination

Has $2+2+2=6$ multiplications (vs. 24)

- For n-edge binary chain, only $2 n$ multiples

With evidence

Variable Elimination

- Two steps:
- Push summations as far as possible to right (assuming some ordering of variables)
- Compute the sum

$$
\begin{aligned}
\mathrm{P}(D \mid A=a) & =\Sigma_{\mathrm{B}} \Sigma_{\mathrm{C}} \mathrm{P}(D \mid C) \mathrm{P}(C \mid B) \mathrm{P}(B \mid A=a) \\
& =\Sigma_{\mathrm{C}} \mathrm{P}(D \mid C) \Sigma_{\mathrm{B}} \mathrm{P}(C \mid B) \mathrm{P}(B \mid A=a)
\end{aligned}
$$

"Factors"

- $P(A, B, C, D)$

$$
=\underbrace{P(A)}_{l} \cdot \underbrace{P(C)}_{l} \cdot \underbrace{P(B \mid A, C)}_{l} \cdot \underbrace{P(D \mid C)}_{\phi_{1}}
$$

- Scope $\left[\phi_{4}\right]=\{D, C\}$

- Variable Elimination: write out joint as factors
- factor ϕ_{i} out of sum over X when $X \notin$ scope $\left[\phi_{i}\right]$

Discarding non-Ancestors

- $P(A, B, C, D)$

$$
=P(A) P(C) P(B \mid A, C) P(D \mid C)
$$

- Query: $P(B, C \mid A=a)$

$$
\begin{aligned}
& =\Sigma_{D} P(C) P(B \mid A=a, C) P(D \mid C) \\
& =P(C) P(B \mid A=a, C) \Sigma_{D} P(D \mid C)
\end{aligned}
$$

- $\Sigma_{D} P(D \mid C)=1$ for all C, we can ignore it
- In general: when computing $P(\boldsymbol{Y} \mid \boldsymbol{E})$ we can ignore nodes not in Ancestors (\mathbf{Y}, \mathbf{E})

Discard by separation in Markov Network

- $P(A, B, C, D, E)$
$=P(E) P(A \mid E) P(C) P(B \mid A, C) P(D \mid C)$
- Query: $P(B, C \mid A=a)$
* Throw out variables separated from query by evidence in moral graph

Semantics of summed-out factors

- Sums don't always correspond to simple conditional probabilities

Complexity of Inference

- What does variable elimination buy us?
- It depends on the network
- If the distribution doesn't factor well, elimination won't help
- Generally, Bayesian Inference is hard
- NP-complete problems can be reduced to it
- Ordering heuristics:
- Min neighbors (weighted)
- Min fill (weighted)

Water

Link

Diabetes

Barley

Reduction to Boolean Satisfiability (1)

- Boolean Satisfiability
- Given a boolean formula in 3-CNF, e.g.: (x1 v -x3 v x7) ^ (x4 v x5 v -x6) ^... Is there an assignment to variables (i.e. $x i=$ true|false) that makes the formula true?

Reduction to Boolean Satisfiability (2)

- (x1 v -x3 v x7) ^ (x4 v x5 v -x6)
- Let $\mathrm{Q}_{\mathrm{i}}=\mathrm{xi}$
- $\mathrm{C}_{\mathrm{i}}=$ clauses (e.g. (x1 v-x3 v x7))
, $\mathrm{X}=$ true iff all C_{i} are true, A_{i} 's are "and" variables

Inference complexity details

- Actually \#P-complete
- Asking for probability \approx counting number of satisfying assignments
b Even approximation is NP-hard
- (see book)

