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Inference: Answering Queries

 Given:

 A probability model

 Subsets of random variables 

 Y (query) and 

 E (evidence) with assignments e to E

 Find P(Y | E = e)

 E.g., 

 P(Battery | Starts = false)

 P(Disease | Symptoms = e)

 P(StockMarketCrash | RecentPriceActivity = e)



What else can we do with queries?

 Prioritizing info gathering

 Which additional evidence would be most informative?

 Explanation

 Why do I need a new fan belt?

 Sensitivity Analysis

 Which variable values are most critical?



Gee, it’s easy

 P(Y  | E = e) = P(Y, e)

P(e)

 Given joint P(y, e, w), we can compute r.h.s. by summing 

out w, y



But…

 Naïve summing is costly

 P(A, B, C, D) = P(A) P(B|A) P(C|B) P(D|C)

 P(D) = A B C P(A) P(B|A) P(C|B) P(D|C)

 23 = 8 combinations, 8*3 = 24 multiplications

 Exponential in # of variables

A CB D



Variable Elimination

P(D) = A B C P(A) P(B|A) P(C|B) P(D|C)

= C P(D|C) B P(C|B) A P(B|A) P(A) 

A CB D

P(B)



Variable Elimination

P(D) = A B C P(A) P(B|A) P(C|B) P(D|C)

= C P(D|C) B P(C|B) A P(B|A) P(A) 

Has 2+2+2=6 multiplications (vs. 24)

 For n-edge binary chain, only 2n multiples

A CB D



With evidence

P(D|A=a) = B C P(B|A=a) P(C|B) P(D|C)

= C P(D|C) B P(C|B) P(B|A=a)

A CB D



Variable Elimination

 Two steps:

 Push summations as far as possible to right (assuming some 

ordering of variables)

 Compute the sum

P(D|A=a) = B C P(D|C) P(C|B) P(B|A=a) 

= C P(D|C) B P(C|B) P(B|A=a)



“Factors”

 P(A, B, C, D) 

=  P(A) ∙  P(C) ∙ P(B | A, C) ∙ P(D | C)

 Scope [4] = {D, C}

 Variable Elimination: write out joint as factors

 factor i out of sum over X when X scope [i] 
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Discarding non-Ancestors

 P(A, B, C, D) 

= P(A) P(C) P(B | A, C)P(D | C)

 Query: P(B, C | A=a)

= D P(C) P(B | A=a, C)P(D | C)

=  P(C) P(B | A=a, C) D P(D | C)

 D P(D | C) = 1 for all C, we can ignore it

 In general: when computing P(Y | E) we can ignore nodes 

not in Ancestors(Y, E)

A C

B D



Discard by separation in Markov Network

 P(A, B, C, D, E) 

= P(E) P(A|E) P(C) P(B | A, C)P(D | C)

 Query: P(B, C | A=a)

 Throw out variables separated from query by evidence in 

moral graph
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Semantics of summed-out factors

 Sums don’t always correspond to simple conditional 

probabilities



Complexity of Inference

 What does variable elimination buy us?

 It depends on the network

 If the distribution doesn’t factor well, elimination won’t help

 Generally, Bayesian Inference is hard

 NP-complete problems can be reduced to it

 Ordering heuristics:

 Min neighbors (weighted)

 Min fill (weighted)







Reduction to Boolean Satisfiability (1)

 Boolean Satisfiability

 Given a boolean formula in 3-CNF, e.g.:
(x1 v -x3 v x7) ^ (x4 v x5 v -x6) ^ …

Is there an assignment to variables (i.e. xi = true|false) that 

makes the formula true?



Reduction to Boolean Satisfiability (2)

 (x1 v -x3 v x7) ^ (x4 v x5 v -x6)

 Let Qi = xi

 Ci = clauses (e.g.(x1 v -x3 v x7))

 X = true iff all Ci are true,      Ai’s are “and” variables



Inference complexity details

 Actually #P-complete

 Asking for probability ≈ counting number of satisfying 

assignments

 Even approximation is NP-hard 

 (see book)


