Structure Learning

EECS 474 Fall 2016

Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks
- Inference
- Learning
 - Parameters, **Structure**, EM
- HMMs

D

Hard problem

Finding the BN structure with the highest "score" among those structures with at most k parents is NP hard for k>1 (Chickering, 1995)

Inputs

Data (potentially incomplete)

Outputs

Graphical model structure (we'll focus on Bayes Nets)

Approaches

- Constraint-based
- Score-based approaches
 - Local search
- Bayesian Model Averaging

Hard problem

Finding the BN structure with the highest "score" among those structures with at most k parents is NP hard for k>1 (Chickering, 1995)

Inputs

Data (potentially incomplete)

Outputs

Graphical model structure (we'll focus on Bayes Nets)

Approaches

- Constraint-based
- Score-based approaches
 - Local search
- Bayesian Model Averaging

Constraint-based Approaches

- Idea: we know how to construct a Bayes Net if we can perform independence tests
 - ► (**A** ⊥ **B** | **C**) ?
- Naïve construction
 - depends on variable ordering
 - Issues potentially large number of independence queries
- A more sophisticated PDAG construction process works better (see book)

Constraint-based approach guarantees

- Can uncover a *perfect* map using a polynomial # of tests if:
 - ▶ Bounded in-degree *d* in *G*^{*} (the true graph)
 - Perfect independence queries up to size 2d + 2 (Strong)
 - P* (true dist.) is faithful to G* (Also strong)
 - ▶ i.e., any independencies in P* reflected as d-separation in G*

Approaches

D

- Constraint-based
- Score-based approaches
 - Local search
- Bayesian Model Averaging

Scoring Structures

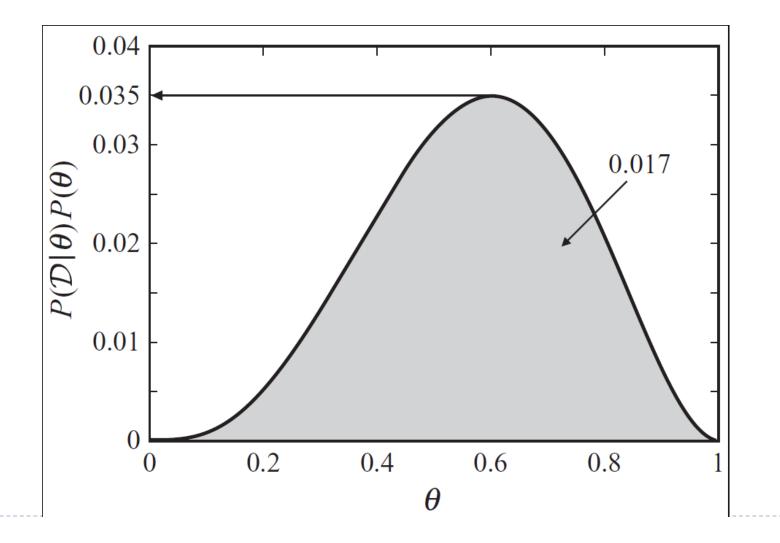
- Maximum likelihood G
 - Choose $G = \arg \max_{G} \max_{\theta} P(\text{Data} \mid \theta)$
- Or MAP:
 - Choose $G = \arg \max_{G} \max_{\theta} P(\text{Data} \mid \theta) P(\theta)$

...what's wrong with these?

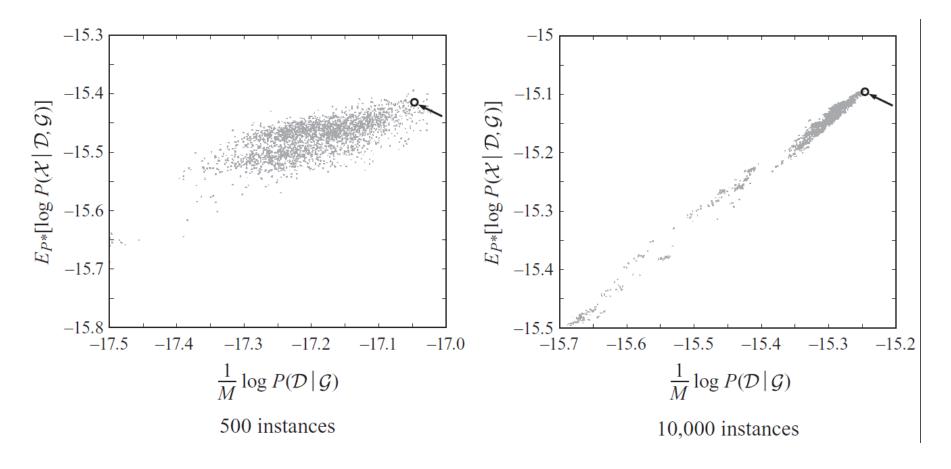
Bayesian Score for G = prior for G + likelihood integrated over all parameters for G

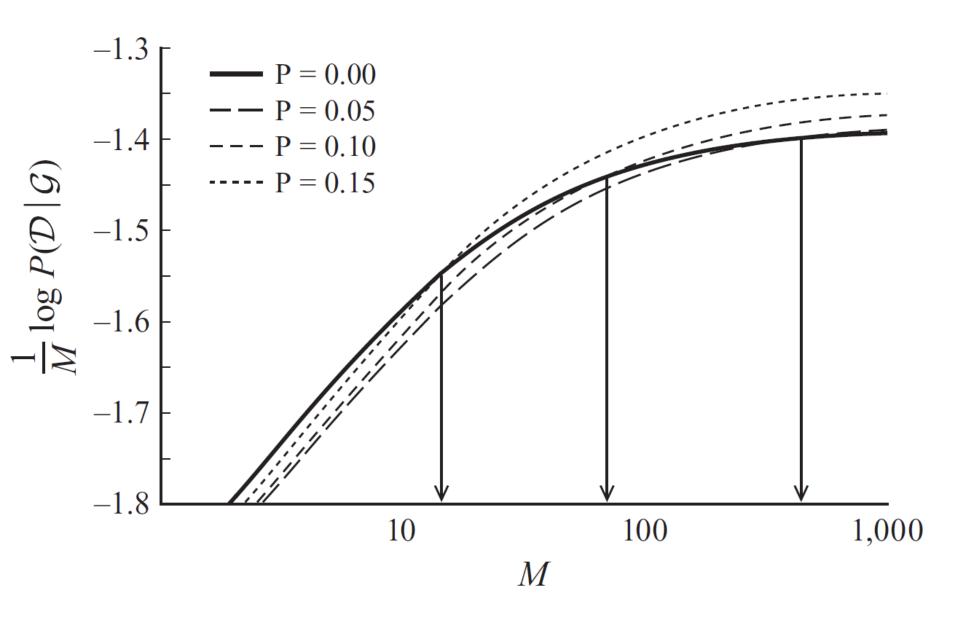
BayesianScore(G : Data) = log P(Data | G) + log P(G)
P(Data | G) = ∫_{⊕_G} P(Data | θ_G, G) P(θ_G | G) dθ_G

Integrating over parameters



Training (x-axis) vs. Test (y-axis) Perf.





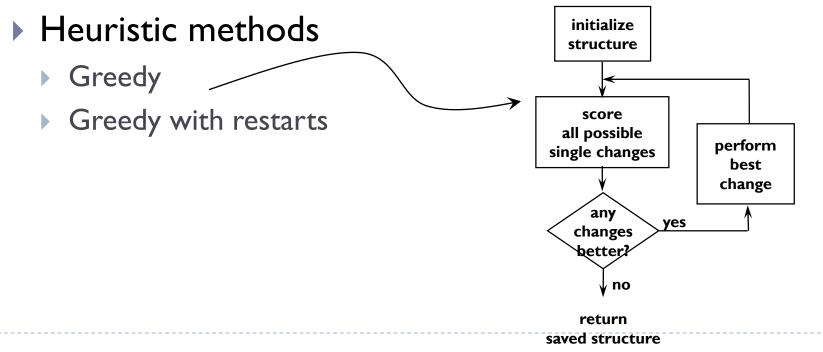
Bayesian Information Criterion

Bayes Score includes:

- ▶ P(Data | G) = $\int_{\Theta_G} P(Data | \theta_G, G) P(\theta_G | G) d\theta_G$
- Integral sometimes difficult
- Approximation:

 $score_{BIC}(G) = -(Dim[G]/2) \log M + \log \max_{\theta_{C}} P(Data | \theta_{G})$

Finding the BN structure with the highest score among those structures with at most k parents is NP hard for k>1 (Chickering, 1995)



Structure priors

Lots of options

- All possible structures equally likely
- Partial ordering, required / prohibited arcs
- Prior(G) α Similarity(G, Gprior)

Approaches

D

- Constraint-based
- Score-based approaches
 - Local search
- Bayesian Model Averaging

Bayesian Model Averaging

Previous methods all find a single graph G

Bayesian model averaging instead makes predictions by averaging over structures:

 $P(\text{test example} | \text{Data}) = \sum_{G} P(\text{test example} | \text{Data}, G) P(G | \text{Data})$