Basics of Statistical Estimation

Doug Downey, Northwestern EECS 474, Fall 2016

(several illustrations from P. Domingos, University of Washington CSE)

Bayes' Rule

- $P(A \mid B) = P(B \mid A) P(A) / P(B)$
- Example:

```
P(symptom| disease) = 0.95, P(symptom| \negdisease) = 0.05
P(disease = 0.0001)
```

```
P(disease | symptom)
= P(symptom | disease)*P(disease)
P(symptom)
```


Bayes' Rule

- $P(A \mid B) = P(B \mid A) P(A) / P(B)$
- Also:
 - $P(A \mid B, C) = P(B \mid A, C) P(A \mid C) / P(B \mid C)$
- More generally:
 - $P(A \mid B) = P(B \mid A) P(A) / P(B)$
 - (Boldface indicates vectors of variables)

Bayes' Rule

- Why is Bayes' Rule so important?
 - Often, we want to deduce P(Hidden state | Data)
 - ▶ E.g., Hidden state = disease, Data = symptoms
 - and the simplest way to express that is in terms of "causes" of the model: P(Data | Model)
 - ▶ E.g., how common is a symptom, with or without a given disease
 - times a prior belief about the model, **P(Model)**
 - E.g., probability of a disease

Terms for Bayes

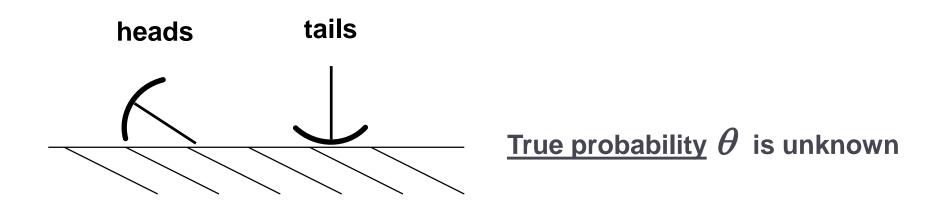
- P(Model | Data) = P(Data | Model) P(Model) / P(Data)
- ▶ P(Model) : **Prior**
- P(Data | Model) : Likelihood
- ▶ P(Model | Data) : **Posterior**

Probabilistic Models

- Joint Distribution can answer queries
 - P(symptoms, disease) can be used to predict whether person has disease based on symptoms
- But:
 - Where do the probabilities come from (learning)?
 - How do we represent a joint compactly using conditional independencies? (representation – graphical models)

Learning Probabilities: Classical Approach

Simplest case: Flipping a thumbtack



Given: flips generated independently with the same θ , (a.k.a. Independent and identically distributed data - iid), Estimate: θ

Estimating Probabilities

Three Methods:

- Maximum Likelihood Estimation (ML)
- Bayesian Estimation
- Maximum A posteriori Estimation (MAP)

Maximum Likelihood Principle

Choose the parameters that maximize the probability of the observed data

Maximum Likelihood Estimation

$$p(\text{heads} \mid \theta) = \epsilon$$

$$p(\text{tails } | \theta) = (1 - \theta)$$

$$p(hhth...tth | \theta) = \theta^{\#h} (1 - \theta)^{\#t}$$

(Number of heads is binomial distribution)

Computing the ML Estimate

- Use log-likelihood
- Differentiate with respect to parameter(s)
- Equate to zero and solve
- Solution:

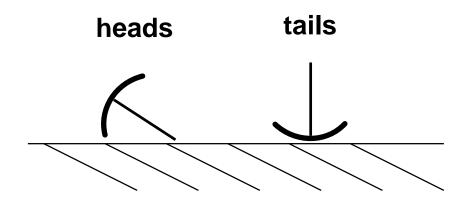
$$\theta = \frac{\#h}{\#h + \#t}$$

Sufficient Statistics

$$p(hhth...tth \mid \theta) = \theta^{*h}(1 - \theta)^{*t}$$

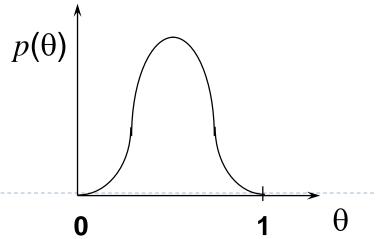
(#h,#t) are sufficient statistics

Bayesian Estimation



True probability heta is unknown

Bayesian probability density for heta



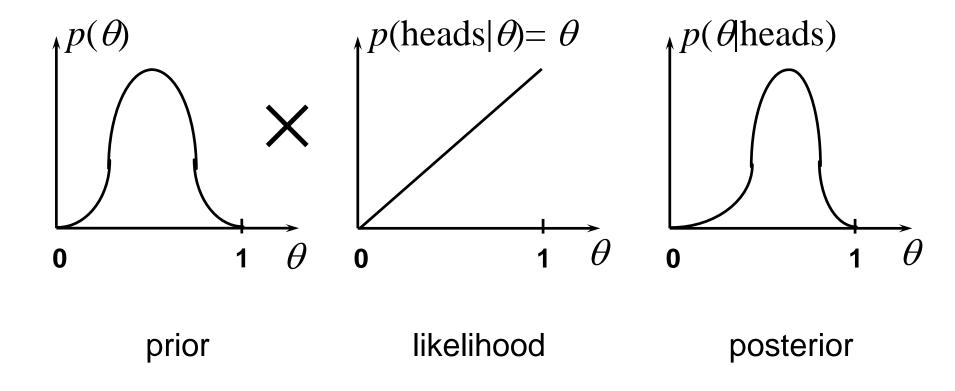
Use of Bayes' Theorem

posterior
$$p(\theta \mid \text{heads}) = \frac{p(\theta) p(\text{heads} \mid \theta)}{\int p(\theta') p(\text{heads} \mid \theta') d\theta'}$$

$$\propto p(\theta) p(\text{heads} \mid \theta)$$

$$\propto p(\theta) p(\text{heads} \mid \theta)$$

Example: Observation of "Heads"



Probability of Heads on Next Toss

$$p(n + 1 \text{th toss is } h \mid \mathbf{d}) = \int p(X_{N+1} = h \mid \theta) p(\theta \mid \mathbf{d}) d\theta$$
$$= \int \theta p(\theta \mid \mathbf{d}) d\theta$$
$$= E_{p(\theta \mid \mathbf{d})}(\theta)$$

MAP Estimation

- Approximation:
 - Instead of averaging over all parameter values
 - Consider only the **most probable value** (i.e., value with highest posterior probability)
- Usually a very good approximation, and much simpler
- MAP value ≠ Expected value
- MAP → ML for infinite data
 (as long as prior ≠ 0 everywhere)

Prior Distributions for θ

- Direct assessment
- Parametric distributions
 - Conjugate distributions (for convenience)

Conjugate Family of Distributions

Beta distribution:

$$p(\theta) = \text{Beta}(\alpha_h, \alpha_t) \propto \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_t - 1}$$
$$\alpha_h, \alpha_t > 0$$

Resulting posterior distribution:

$$p(\theta \mid h \text{ heads}, t \text{ tails}) \propto \theta^{\# h + \alpha_h - 1} (1 - \theta)^{\# t + \alpha_t - 1}$$

Estimates Compared

Prior prediction:

$$E(\theta) = \frac{\alpha_h}{\alpha_h + \alpha_t}$$

Bayesian posterior prediction

$$E(\theta) = \frac{\# h + \alpha_h}{\# h + \alpha_h + \# t + \alpha_t}$$

MAP estimate:

$$\theta = \frac{\# h + \alpha_h - 1}{\# h + \alpha_h - 1 + \# t + \alpha_t - 1}$$

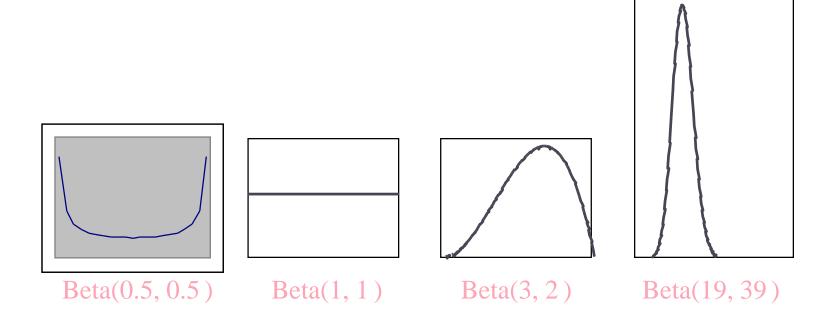
ML estimate:

$$\theta = \frac{\# h}{\# h + \# t}$$

Intuition

- The hyperparameters α_h and α_t can be thought of as imaginary counts from our prior experience, starting from "pure ignorance"
- Equivalent sample size = α_h + α_t
 - ("equivalent" in terms of effect on Bayesian estimate)
- The larger the equivalent sample size, the more confident we are about the true probability

Beta Distributions



Assessment of a Beta Distribution

Method 1: Equivalent sample

- assess α_h and α_t
- assess $\alpha_h + \alpha_t$ and $\alpha_h / (\alpha_h + \alpha_t)$

Method 2: Imagined future samples

$$p(\text{heads}) = 0.2 \text{ and } p(\text{heads} \mid 3 \text{ heads}) = 0.5 \Rightarrow \alpha_h = 1, \alpha_t = 4$$

check:
$$0.2 = \frac{1}{1+4}$$
, $0.5 = \frac{1+3}{1+3+4}$

Generalization to *m* Outcomes (Multinomial Distribution)

Dirichlet distribution:

$$p(\theta_1, \dots, \theta_m) = \text{Dirichlet}(\alpha_1, \dots, \alpha_m) \propto \prod_{i=1}^m \theta_i^{\alpha_i - 1}$$

$$\sum_{i=1}^m \theta_i = 1 \qquad \alpha_i > 0$$

Properties:

$$E(\theta_i) = \frac{\alpha_i}{\sum_{i=1}^{m} \alpha_i}$$

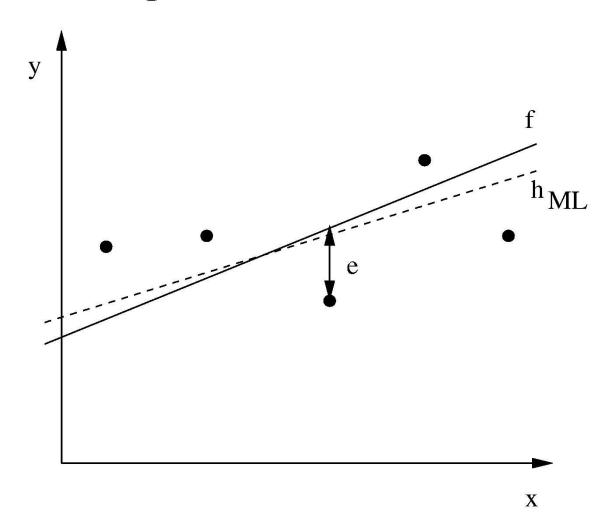
$$p(\theta \mid N_1, \dots, N_m) \propto \prod_{i=1}^m \theta_i^{\alpha_i + N_i - 1}$$

Other Distributions

Likelihoods from the exponential family

- Binomial
- Multinomial
- Poisson
- ▶ Gamma
- Normal

Learning a Real-Valued Function



Consider any real-valued target function f

Training examples $\langle x_i, d_i \rangle$, where d_i is noisy training value

- $\bullet \ d_i = f(x_i) + e_i$
- e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of squared errors:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Maximum likelihood hypothesis:

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} p(D|h) = \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} p(d_i|h)$$
$$= \underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{d_i - h(x_i)}{\sigma})^2}$$

Maximize natural log of this instead ...

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma}\right)^2$$

$$= \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} -\frac{1}{2} \left(\frac{d_i - h(x_i)}{\sigma}\right)^2$$

$$= \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} - (d_i - h(x_i))^2$$

$$= \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} (d_i - h(x_i))^2$$