Sequential Language Modeling

Northwestern EECS 474 Probabilistic Graphical Models

Language Modeling

- Modeling sequences of words (today)
 - N-gram Models
 - HMMs (briefly)
 - Neural Network Language Models
- Modeling Documents (next time)
 - "Bag of words"
 - Latent Semantic Analysis, Latent Dirichlet Allocation

Modeling Sequences of Words

Statistical language models assign probabilities to sequences of words

 $P("the dog barked") = 4.203 * 10^{-9}$

Applications

- Speech Recognition
- Machine Translation
- Spelling Correction
- Information Extraction

Outline

N-gram Models

- Sparsity: Smoothing, Backoff
- Perplexity Measure

Exploiting Word Similarity

- Brown Clustering
- HMMs (briefly)
- Neural Network Language Models
- Future Directions

So you want to learn an n-gram model

- Don't implement one yourself
 - ► SRILM

http://www.speech.sri.com/projects/srilm/

Outline

N-gram Models

- Sparsity: Smoothing, Backoff
- Perplexity Measure
- Exploiting Word Similarity
 - Brown Clustering
 - HMMs (briefly)
 - Neural Network Language Models
- Future Directions

How to measure LM performance?

• Test model M on held-out text \overline{w} of length N

$$\operatorname{Perplexity}(\mathsf{M}, \overline{w}) = 2^{\frac{-\log_2 P_{\mathcal{M}}(\overline{w})}{N}}$$

Models trained on 38 million words from the Wall Street Journal (WSJ) using a 19,979 word vocabulary. Evaluate on a disjoint set of 1.5 million WSJ words

Perplexity: Trigram < Bigram < Unigram (in this case) Which N-gram is the best in general?

	Unigram	Bigram	Trigram
Perplexity	962	170	109

http://www.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

Unigram

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Bigram

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her

Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Outline

- N-gram Models
 - Sparsity: Smoothing, Backoff
 - Perplexity Measure
- Exploiting Word Similarity
 - Brown Clustering
 - HMMs (briefly)
 - Neural Network Language Models
- Future Directions

motivation

Corpus includes:

"Deadline on Monday"

"Deadline on Thursday"

... suggests P("Deadline on ____") ?

Say $C: \mathcal{V} \to \{1, 2, \dots k\}$ is a *partition* of the vocabulary into k classes

The model:

$$p(w_1, w_2, \dots, w_T) = \prod_{i=1}^n p(w_i | C(w_i)) p(C(w_i) | C(w_{i-1}))$$

Michael Collins http://www.cs.columbia.edu/~cs4705/lectures/brown.pdf

Learning Clusters?

Greedy Agglomerative Clustering

- Start with each word in own cluster, iteratively combine the two clusters that results in the smallest decrease in likelihood
- Slow (cubic in vocab size), faster approaches exist

lawyer newspaperman stewardess toxicologist slang babysitter conspirator womanizer mailman salesman bookkeeper troubleshooter bouncer technician janitor saleswoman

D

Miller, Scott, Jethran Guinness, and Alex Zamanian. "Name Tagging with Word Clusters and Discriminative Training." *HLT-NAACL*. Vol. 4. 2004. Nike Maytag Generali Gap Harley-Davidson Enfield genus Microsoft Ventritex Tractebel Synopsys WordPerfect

101101110010010101011100 1011011100100101010111010 1011011100100101010111011 101101110010010101011110 101101110010010101111110 10110111001001010101111110 10110111001001010101111111 101101110010010111000 1011011100100101110010 1011011100100101100110 1011011100100101100111 10110111001001011101000

Miller, Scott, Jethran Guinness, and Alex Zamanian. "Name Tagging with Word Clusters and Discriminative Training." *HLT-NAACL*.Vol. 4. 2004. John Consuelo Jeffrey Kenneth Phillip WILLIAM Timothy Terrence Jerald Harold Frederic Wendell

Miller, Scott, Jethran Guinness, and Alex Zamanian. "Name Tagging with Word -Clusters-and Discriminative Training." *HLT-NAACL*.Vol. 4. 2004.

HMMs

"Soft" version of Brown Clusters

▶ as GMMs are to K-means

model	AUC
I-HMM-TYPE-R	0.18
HMM-TYPE-R	0.17
BROWN-TYPE-R-3200	0.16
BROWN-TYPE-R-1000	0.18
BROWN-TYPE-R-320	0.15
BROWN-TYPE-R-100	0.13
LATTICE-TYPE-R	0.11
N-GRAM-R baseline	0.10
Random baseline	0.10

Outline

- N-gram Models
 - Sparsity: Smoothing, Backoff
 - Perplexity Measure
- Exploiting Word Similarity
 - Brown Clustering
 - HMMs (briefly)
 - Neural Network Language Models
- Future Directions

Results

	0.75*RNN + 0.25 * KN					
	PPL V		WER 🗸			
Model	RNN	RNN+KN	RNN	RNN+KN		
KN5 - baseline	-	221	-	13.5		
RNN 60/20	229	186	13.2	12.6		
RNN 90/10	202	173	12.8	12.2		
RNN 250/5	173	155	12.3	11.7		
RNN 250/2	176	156	12.0	11.9		
RNN 400/10	171	152	12.5	12.1		
3xRNN static	151	143	11.6	11.3		
3xRNN dynamic	128	121	11.3	11.1		

RNNs

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

Intuition behind LSTMs

Harness long-range dependencies

LSTM example

Noraset et al., AAAI 2017

- Incredibly good language modeling results
 - Good Turing Smoothing: ~160 perplexity (lower is better)
 - Kneser-Ney smoothing: ~140 perplexity
 - Today's best LSTMs: ~70 perplexity [Google, ca 2015]

Perplexity numbers on Penn TreeBank data set (approx.)