
Bayes Net Learning

EECS 474 Fall 2016



Homework Remaining

 Homework #3 assigned

 Homework #4 will be about semi-supervised 

learning and expectation-maximization

 …Homeworks #3-#4: the “how” of Graphical 

Models

 Then project (more on this soon)



Road Map

 Basics of Probability and Statistical Estimation

 Bayesian Networks

 Markov Networks

 Inference

 Learning

 Parameters, Structure, EM

 Semi-supervised Learning, HMMs



Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets



What is Learning?

 Given:

 target domain (set of random variables)

 E.g., disease diagnosis: symptoms, test results, diseases

 Expert knowledge

 MD’s opinion on which diseases cause which symptoms

 Training examples from the domain

 Existing patient records

 Build a model that predicts future examples

 Use expert knowledge & data to learn PGM structure and 

parameters



General Rules of Thumb in Learning

 The more training examples, the better

 The more (~correct) assumptions, the better

 Model structure (e.g., edges in Bayes Net)

 Feature selection 

 Fewer irrelevant params => better



Optimizing on Training Set

 Cross-validation

 Partition data into k pieces (a.k.a. “folds”)

 For each piece p 

 train on all pieces but p, test on p

 Average the results

 Homework 3: 10-fold CV on training set

 How well will this predict test set performance?



Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets



Learning in Graphical Models

 Problem Dimensions

 Model

 Bayes Nets 

 Markov Nets

 Structure

 Known

 Unknown (structure learning)

 Data

 Complete 

 Incomplete (missing values or hidden variables)



Learning in Graphical Models

 Problem Dimensions (today)

 Model

 Bayes Nets 

 Markov Nets

 Structure

 Known

 Unknown (structure learning)

 Data

 Complete

 Incomplete (missing values or hidden variables)



Learning in Bayes Nets – the upshot

 Just statistical estimation for each CPT

PML(A) = 0.714

PML (B | A=1) = 0.6 

A B

1 1

1 0

1 0

0 1

1 1

0 1

1 1

A B

Training Data



Learning in Bayes Nets – details

 Problem statement (for today):

 Given a Bayes Network structure G, and a set of complete 

training examples {Xi} 

 Learn the CPTs for G.

 Assumption (as before in stat. estimation): 

Training examples are independent and identically 

distributed (i.i.d.) from an underlying distribution P*

 Why just statistical estimation for each CPT?



Learning in Bayes Nets

 Thumbtack problem can be viewed as learning the CPT 

for a very simple Bayes Net:

Thumbtack problem examples from Chris Meek, Microsoft Research

X heads/tails

   headsXP

tailsheads



Learning as Inference

 Think of learning P(Q   | {Xi}) as inference

Xi heads/tails

   headsXP i

Q

X1 X2 XN
...

toss 1 toss 2 toss N

tailsheads



Next Simplest Bayes Net

Xheads/tails Y heads/tails

tailsheads “heads” “tails”



Next Simplest Bayes Net

Xheads/tails Y heads/tails

QX

X1 X2 XN
...

toss 1 toss 2 toss N

QY

X1 X2 XN
...

toss 1 toss 2 toss N

?



Next Simplest Bayes Net

Xheads/tails Y heads/tails

QX

X1 X2 XN
...

toss 1 toss 2 toss N

QY

X1 X2 XN
...

toss 1 toss 2 toss N



Next Simplest Bayes Net

Xheads/tails Y heads/tails

QX

X1 X2 XN
...

toss 1 toss 2 toss N

QY

X1 X2 XN
...

toss 1 toss 2 toss N

“Parameter Independence”



Getting Tougher

Xheads/tails Y heads/tails

Three probabilities to learn:

• X=heads

• Y=heads|X=heads

• Y=heads|X=tails



Learning as Inference

Xheads/tails Y heads/tails

QX

X1

X2



QY|X=heads

Y1

Y2



case 1

case 2

QY|X=tails

?

??



Parameter Independence

Xheads/tails Y heads/tails

QX

X1

X2



QY|X=heads

Y1

Y2



case 1

case 2

QY|X=tails



Three Separate Thumbtack Problems

Xheads/tails Y heads/tails

QX

X1

X2



QY|X=heads

Y1

Y2



case 1

case 2

QY|X=tails

heads

tails



Parameter Estimation in Bayes Nets

 Each CPT learned independently

 Easy when CPTs have convenient form

 Multinomials

 Maximum Likelihood = counting

 Gaussian, Poisson, etc.

 And priors are conjugate

 E.g. Beta for Binomials, etc.

 And data is complete



Parameter Priors

 MAP estimation

PML(B | A=0) = 2/2 = 1.0

PMAP(B | A=0) 

= (2+1)/(2+2) = 0.75

“Laplace smoothing”

…same as P(QB | A=0) = Beta(2, 2)

A B

1 1

1 0

1 0

0 1

1 1

0 1

1 1

A B
Training Data



Parameter Estimation in Bayes Nets

 Each CPT learned independently

 Easy when CPTs have convenient form

 Multinomials

 Maximum Likelihood = counting

 Gaussian, Poisson, etc.

 And priors are conjugate

 E.g. Beta for Binomials, etc.

 And data is complete



Incomplete Data

 Say we don’t know X1

Xheads/tails Y heads/tails

QX

X1

QY|X=heads

Y1

QY|X=tails

X2



Y2



tails

Parameters 

are now 

dependent!



Incomplete Data in Practice

 Options:

 Just ignore it (for all examples)

 Replace missing Xi with most typical value in training set

 Sample Xi from P(Xi) in training set

 Let “unknown” be a value for Xi

 Try to infer missing values (special case: semi-supervised 

learning)



Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets



Learning Continuous CPTs

 Options:

 Discretize

 Weka does this

 Not a bad option

 Use canonical functions

 Gaussians most popular

 see Matlab’s package or WinMine, etc.



Continuous CPT Example

E.g., Linear Gaussian                                   … 

P(X | u) = N(0 + 1 u1 +… k uk; 
2)

U1 U2
Uk

X



Linear Gaussian

ML solution from system of equations, e.g.:

E[X] = 0 + 1 E[u1]+… k E[uk]

U1 U2
Uk

X



Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets



Bias vs. Variance

 Efficacy of learning varies with Bayes Net structure and 

amount of training data



Bayes Net design impacts learning

 Data required to learn a CPT grows roughly linearly with 

number of parameters

 Fewer variables & edges is better

 Including more informative variables and relationships 

improves accuracy

 More variables & edges is better (?)

 => selection of variables and edges is the art of Bayes 

Net design



Overfitting in Bayes Nets

 P(C | B) =

 Using P(C | A, B) => zero training

error (vs. 17% error for P(C | B)), 

but cells have

12, 8, 4, 4 total samples

 => Very susceptible to random noise

A B C

1 1 1

1 0 0

1 0 0

0 1 1

1 1 1

0 0 1

1 1 1

P(C)

B=0 4/12

B=1 16/16

Training data is the 

following, repeated 4 times:



Bias vs. Variance (1 of 3)

High Bias  Low Bias

Low Variance High Variance

Underfitting Overfitting

A B

C

A B

C



Bias vs. Variance (2 of 3)

High Bias  Low Bias

Low Variance High Variance

Underfitting Overfitting

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A ^ B A ^ not

B

not A ^

B

not A ^

not B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A ^ B A ^ not B not A ^ B not A ^

not B

P
(C

 |
 A

, B
)



Bias vs. Variance (3 of 3)

 High bias sometimes okay

 E.g. Naïve Bayes effective in practice

Spam

“Lottery” “winner” . . . “Dear”



How do you choose?

 Cross-validation

 And/or use heuristics for trading training accuracy 

for model complexity 

 Useful in automated structure learning

 E.g., pick a structure and algorithmically refine

 Later



Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets



Discriminative vs. Generative training

 Say our graph G has variables X , Y

 Previous method learns P(X , Y )

 But often, the only inferences we care about are of form 

P(Y | X)

 P(Disease | Symptoms = e)

 P(StockMarketCrash | RecentPriceActivity = e)



Discriminative vs. Generative training

 Learning P(X , Y ): generative training

 Learned model can “generate” the full data X, Y

 Learning only P(Y | X): discriminative training

 Model can’t assign probs. to X – only Y given X

 Idea: Only model what we care about

 Don’t “waste data” on params irrelevant to task

 Side-step false independence assumptions in training (example 

to follow)



Generative Model Example

 Naïve Bayes model

 Y binary {1=spam, 0=not spam}

X an n-vector: message has word (1) or not (0)

 Re-write P(Y | X) using Bayes Rule, apply Naïve Bayes

assumption

 2n + 1 parameters, for n observed variables

Spam

“Lottery” “winner” . . . “Dear”



Generative => Discriminative (1 of 3)

 But P(Y | X) can be written more compactly

P(Y | X) =                         1

1 + exp(w0 + w1 x1 + … + wn xn)

 Total of n + 1 parameters wi

“Lottery” “winner” . . . “Dear”

Spam



Generative => Discriminative (2 of 3)

 One way to do conversion (vars binary):

exp(w0)= P(Y = 0) P(X1=0|Y=0) P(X2=0|Y=0)…                         

P(Y = 1) P(X1=0|Y=1) P(X2=0|Y=1)…

for i > 0:

exp(wi)=    P(Xi=0|Y=1) P(Xi=1|Y=0)

P(Xi=0|Y=0) P(Xi=1|Y=1)



Generative => Discriminative (3 of 3)

 We reduced 2n + 1 parameters to n + 1

 Bias vs. Variance arguments says this must be better, right?

 Not exactly.  If we construct P(Y | X) to be equivalent to 

Naïve Bayes (as before)

 then it’s…equivalent to Naïve Bayes

 Idea: optimize the n + 1 parameters directly, using training 

data



Discriminative Training

 In our example:

P(Y | X) =                         1

1 + exp(w0 + w1 x1 + … + wn xn)

 Goal: find wi that maximize likelihood of training data Ys 

given training data Xs

 Known as “logistic regression”

 Solved with gradient ascent techniques

 A convex (actually concave) optimization problem





Naïve Bayes vs. LR

 Naïve Bayes “trusts its assumptions” in training

 Logistic Regression doesn’t – recovers better when 

assumptions violated



NB vs. LR: Example

 Naïve Bayes will classify the last example incorrectly, even 

after training on it!

 Whereas Logistic Regression is perfect with e.g.,

w0 = 0.1  wlottery = wwinner = wlunch = -0.2   wnoon = 0.4

SPAM Lottery Winner Lunch Noon

1 1 1 0 0

1 1 1 1 1

0 0 0 1 1

0 1 1 0 1

Training Data



Logistic Regression in practice

 Can be employed for any numeric variables Xi

 or for other variable types, by converting to numeric (e.g. 

indicator) functions

 “Regularization” plays the role of priors in Naïve Bayes

 Optimization tractable, but (way) more expensive than 

counting (as in Naïve Bayes)



Discriminative Training

 Naïve Bayes vs. Logistic Regression one illustrative case

 Applicable more broadly, whenever queries P(Y | X) 

known a priori



Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets



Recall: Markov Networks

 Undirected Graphical Model

 Potential functions c defined over cliques

 P(x) = c c(xc) Z = x c c(xc) 

Z

Grades
Trivia 

Knowledge
TV

Grades TV 1(G, TV)

bad none 2.0

good none 3.0

bad lots 3.0

good lots 1.0

TV Trivia

Knowledge 

2(TV, K)

none weak 2.0

lots weak 1.0

none strong 1.5

lots strong 3.0



Log-linear Formulation (1 of 2)

 P(x) = exp(i wi fi (Di) )

Z

 E.g.: write 1(G, TV) as exp(w1 f1(G, TV) + … + w4 f4(G, TV))

Grades TV

Grades TV 1(G, TV) f1(G, TV) f2(G, TV) f3(G, TV) f4(G, TV)

bad none 2.0 1 0 0 0

good none 3.0 0 1 0 0

bad lots 3.0 0 0 1 0

good lots 1.0 0 0 0 1

w1 = ln 2.0  w2 = ln 3.0  w3 = ln 3.0  w4 = ln 1.0  



Log-linear Formulation (2 of 2)

 P(x) = exp(i wi fi (Di) )

Z

 Why?

 “Feature” fi can be simpler than full potentials

 Learning easy to express



Learning in Markov Networks

 Harder than in Bayes Nets

 Why?  In Bayes Nets, likelihood is:

 P(Data | ) = m Datai P(Xi[m]| Parents(Xi)[m] : i)

where Xi[m] is the assignment to Xi in example m

= i m Data P(Xi[m]| Parents(Xi)[m] : i)

 Assuming param independence, maximize global likelihood 
by maximizing each CPT likelihood 
m Data P (Xi[m] | Parents(Xi)[m] : i)         independently



Learning in Markov Networks

 Harder than in Bayes Nets

 In Markov Net,

Likelihood = 

P(Data | w) = m Data exp(i wifi (Di[m]) )

Zw

 But Zw = x  Val(X) exp(i wifi (x) )

 Sum over exps involving all wi

 Can’t decompose as we did in Bayes Net case



So what do we do?

 Maximize likelihood using Gradient Ascent

 Or 2nd order optimization

  / wi ln P(Data | w) = EData[fi (Di)] - Ew[fi ]

 Concave (no local maxima)

 Requires inference at each step 

 Slow



Approximation: Pseudo-likelihood

 Pseudo-likelihood PL(Data |  ) =

m Datai P(Xi[m]| Neighbors(Xi)[m] : i)

 Assume variables depend only on values of neighbors in data

 No more Z!

 Easier to compute/optimize (decomposes)

 But not necessarily a great approximation

 Equal to likelihood in limit of infinite training data



Discriminative Training

 Learn P(Y | X)

  / wi ln P(YData |XData, w) = 

m (fi (y[m], x[m])  - Ew[fi | x[m]])

 Rightmost term: run inference for each value x[m] in data



What have we learned?

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets



Rest of course

 Next:

 Structure Learning

 After that:

 learning with missing data (semi-supervised learning), HMMs


