
Bayes Net Learning

EECS 474 Fall 2016

Homework Remaining

 Homework #3 assigned

 Homework #4 will be about semi-supervised

learning and expectation-maximization

 …Homeworks #3-#4: the “how” of Graphical

Models

 Then project (more on this soon)

Road Map

 Basics of Probability and Statistical Estimation

 Bayesian Networks

 Markov Networks

 Inference

 Learning

 Parameters, Structure, EM

 Semi-supervised Learning, HMMs

Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

What is Learning?

 Given:

 target domain (set of random variables)

 E.g., disease diagnosis: symptoms, test results, diseases

 Expert knowledge

 MD’s opinion on which diseases cause which symptoms

 Training examples from the domain

 Existing patient records

 Build a model that predicts future examples

 Use expert knowledge & data to learn PGM structure and

parameters

General Rules of Thumb in Learning

 The more training examples, the better

 The more (~correct) assumptions, the better

 Model structure (e.g., edges in Bayes Net)

 Feature selection

 Fewer irrelevant params => better

Optimizing on Training Set

 Cross-validation

 Partition data into k pieces (a.k.a. “folds”)

 For each piece p

 train on all pieces but p, test on p

 Average the results

 Homework 3: 10-fold CV on training set

 How well will this predict test set performance?

Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets

Learning in Graphical Models

 Problem Dimensions

 Model

 Bayes Nets

 Markov Nets

 Structure

 Known

 Unknown (structure learning)

 Data

 Complete

 Incomplete (missing values or hidden variables)

Learning in Graphical Models

 Problem Dimensions (today)

 Model

 Bayes Nets

 Markov Nets

 Structure

 Known

 Unknown (structure learning)

 Data

 Complete

 Incomplete (missing values or hidden variables)

Learning in Bayes Nets – the upshot

 Just statistical estimation for each CPT

PML(A) = 0.714

PML (B | A=1) = 0.6

A B

1 1

1 0

1 0

0 1

1 1

0 1

1 1

A B

Training Data

Learning in Bayes Nets – details

 Problem statement (for today):

 Given a Bayes Network structure G, and a set of complete

training examples {Xi}

 Learn the CPTs for G.

 Assumption (as before in stat. estimation):

Training examples are independent and identically

distributed (i.i.d.) from an underlying distribution P*

 Why just statistical estimation for each CPT?

Learning in Bayes Nets

 Thumbtack problem can be viewed as learning the CPT

for a very simple Bayes Net:

Thumbtack problem examples from Chris Meek, Microsoft Research

X heads/tails

 headsXP

tailsheads

Learning as Inference

 Think of learning P(Q | {Xi}) as inference

Xi heads/tails

 headsXP i

Q

X1 X2 XN
...

toss 1 toss 2 toss N

tailsheads

Next Simplest Bayes Net

Xheads/tails Y heads/tails

tailsheads “heads” “tails”

Next Simplest Bayes Net

Xheads/tails Y heads/tails

QX

X1 X2 XN
...

toss 1 toss 2 toss N

QY

X1 X2 XN
...

toss 1 toss 2 toss N

?

Next Simplest Bayes Net

Xheads/tails Y heads/tails

QX

X1 X2 XN
...

toss 1 toss 2 toss N

QY

X1 X2 XN
...

toss 1 toss 2 toss N

Next Simplest Bayes Net

Xheads/tails Y heads/tails

QX

X1 X2 XN
...

toss 1 toss 2 toss N

QY

X1 X2 XN
...

toss 1 toss 2 toss N

“Parameter Independence”

Getting Tougher

Xheads/tails Y heads/tails

Three probabilities to learn:

• X=heads

• Y=heads|X=heads

• Y=heads|X=tails

Learning as Inference

Xheads/tails Y heads/tails

QX

X1

X2

QY|X=heads

Y1

Y2

case 1

case 2

QY|X=tails

?

??

Parameter Independence

Xheads/tails Y heads/tails

QX

X1

X2

QY|X=heads

Y1

Y2

case 1

case 2

QY|X=tails

Three Separate Thumbtack Problems

Xheads/tails Y heads/tails

QX

X1

X2

QY|X=heads

Y1

Y2

case 1

case 2

QY|X=tails

heads

tails

Parameter Estimation in Bayes Nets

 Each CPT learned independently

 Easy when CPTs have convenient form

 Multinomials

 Maximum Likelihood = counting

 Gaussian, Poisson, etc.

 And priors are conjugate

 E.g. Beta for Binomials, etc.

 And data is complete

Parameter Priors

 MAP estimation

PML(B | A=0) = 2/2 = 1.0

PMAP(B | A=0)

= (2+1)/(2+2) = 0.75

“Laplace smoothing”

…same as P(QB | A=0) = Beta(2, 2)

A B

1 1

1 0

1 0

0 1

1 1

0 1

1 1

A B
Training Data

Parameter Estimation in Bayes Nets

 Each CPT learned independently

 Easy when CPTs have convenient form

 Multinomials

 Maximum Likelihood = counting

 Gaussian, Poisson, etc.

 And priors are conjugate

 E.g. Beta for Binomials, etc.

 And data is complete

Incomplete Data

 Say we don’t know X1

Xheads/tails Y heads/tails

QX

X1

QY|X=heads

Y1

QY|X=tails

X2

Y2

tails

Parameters

are now

dependent!

Incomplete Data in Practice

 Options:

 Just ignore it (for all examples)

 Replace missing Xi with most typical value in training set

 Sample Xi from P(Xi) in training set

 Let “unknown” be a value for Xi

 Try to infer missing values (special case: semi-supervised

learning)

Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets

Learning Continuous CPTs

 Options:

 Discretize

 Weka does this

 Not a bad option

 Use canonical functions

 Gaussians most popular

 see Matlab’s package or WinMine, etc.

Continuous CPT Example

E.g., Linear Gaussian …

P(X | u) = N(0 + 1 u1 +… k uk;
2)

U1 U2
Uk

X

Linear Gaussian

ML solution from system of equations, e.g.:

E[X] = 0 + 1 E[u1]+… k E[uk]

U1 U2
Uk

X

Today: Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets

Bias vs. Variance

 Efficacy of learning varies with Bayes Net structure and

amount of training data

Bayes Net design impacts learning

 Data required to learn a CPT grows roughly linearly with

number of parameters

 Fewer variables & edges is better

 Including more informative variables and relationships

improves accuracy

 More variables & edges is better (?)

 => selection of variables and edges is the art of Bayes

Net design

Overfitting in Bayes Nets

 P(C | B) =

 Using P(C | A, B) => zero training

error (vs. 17% error for P(C | B)),

but cells have

12, 8, 4, 4 total samples

 => Very susceptible to random noise

A B C

1 1 1

1 0 0

1 0 0

0 1 1

1 1 1

0 0 1

1 1 1

P(C)

B=0 4/12

B=1 16/16

Training data is the

following, repeated 4 times:

Bias vs. Variance (1 of 3)

High Bias Low Bias

Low Variance High Variance

Underfitting Overfitting

A B

C

A B

C

Bias vs. Variance (2 of 3)

High Bias Low Bias

Low Variance High Variance

Underfitting Overfitting

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A ^ B A ^ not

B

not A ^

B

not A ^

not B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A ^ B A ^ not B not A ^ B not A ^

not B

P
(C

 |
 A

, B
)

Bias vs. Variance (3 of 3)

 High bias sometimes okay

 E.g. Naïve Bayes effective in practice

Spam

“Lottery” “winner” . . . “Dear”

How do you choose?

 Cross-validation

 And/or use heuristics for trading training accuracy

for model complexity

 Useful in automated structure learning

 E.g., pick a structure and algorithmically refine

 Later

Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets

Discriminative vs. Generative training

 Say our graph G has variables X , Y

 Previous method learns P(X , Y)

 But often, the only inferences we care about are of form

P(Y | X)

 P(Disease | Symptoms = e)

 P(StockMarketCrash | RecentPriceActivity = e)

Discriminative vs. Generative training

 Learning P(X , Y): generative training

 Learned model can “generate” the full data X, Y

 Learning only P(Y | X): discriminative training

 Model can’t assign probs. to X – only Y given X

 Idea: Only model what we care about

 Don’t “waste data” on params irrelevant to task

 Side-step false independence assumptions in training (example

to follow)

Generative Model Example

 Naïve Bayes model

 Y binary {1=spam, 0=not spam}

X an n-vector: message has word (1) or not (0)

 Re-write P(Y | X) using Bayes Rule, apply Naïve Bayes

assumption

 2n + 1 parameters, for n observed variables

Spam

“Lottery” “winner” . . . “Dear”

Generative => Discriminative (1 of 3)

 But P(Y | X) can be written more compactly

P(Y | X) = 1

1 + exp(w0 + w1 x1 + … + wn xn)

 Total of n + 1 parameters wi

“Lottery” “winner” . . . “Dear”

Spam

Generative => Discriminative (2 of 3)

 One way to do conversion (vars binary):

exp(w0)= P(Y = 0) P(X1=0|Y=0) P(X2=0|Y=0)…

P(Y = 1) P(X1=0|Y=1) P(X2=0|Y=1)…

for i > 0:

exp(wi)= P(Xi=0|Y=1) P(Xi=1|Y=0)

P(Xi=0|Y=0) P(Xi=1|Y=1)

Generative => Discriminative (3 of 3)

 We reduced 2n + 1 parameters to n + 1

 Bias vs. Variance arguments says this must be better, right?

 Not exactly. If we construct P(Y | X) to be equivalent to

Naïve Bayes (as before)

 then it’s…equivalent to Naïve Bayes

 Idea: optimize the n + 1 parameters directly, using training

data

Discriminative Training

 In our example:

P(Y | X) = 1

1 + exp(w0 + w1 x1 + … + wn xn)

 Goal: find wi that maximize likelihood of training data Ys

given training data Xs

 Known as “logistic regression”

 Solved with gradient ascent techniques

 A convex (actually concave) optimization problem

Naïve Bayes vs. LR

 Naïve Bayes “trusts its assumptions” in training

 Logistic Regression doesn’t – recovers better when

assumptions violated

NB vs. LR: Example

 Naïve Bayes will classify the last example incorrectly, even

after training on it!

 Whereas Logistic Regression is perfect with e.g.,

w0 = 0.1 wlottery = wwinner = wlunch = -0.2 wnoon = 0.4

SPAM Lottery Winner Lunch Noon

1 1 1 0 0

1 1 1 1 1

0 0 0 1 1

0 1 1 0 1

Training Data

Logistic Regression in practice

 Can be employed for any numeric variables Xi

 or for other variable types, by converting to numeric (e.g.

indicator) functions

 “Regularization” plays the role of priors in Naïve Bayes

 Optimization tractable, but (way) more expensive than

counting (as in Naïve Bayes)

Discriminative Training

 Naïve Bayes vs. Logistic Regression one illustrative case

 Applicable more broadly, whenever queries P(Y | X)

known a priori

Learning

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets

Recall: Markov Networks

 Undirected Graphical Model

 Potential functions c defined over cliques

 P(x) = c c(xc) Z = x c c(xc)

Z

Grades
Trivia

Knowledge
TV

Grades TV 1(G, TV)

bad none 2.0

good none 3.0

bad lots 3.0

good lots 1.0

TV Trivia

Knowledge

2(TV, K)

none weak 2.0

lots weak 1.0

none strong 1.5

lots strong 3.0

Log-linear Formulation (1 of 2)

 P(x) = exp(i wi fi (Di))

Z

 E.g.: write 1(G, TV) as exp(w1 f1(G, TV) + … + w4 f4(G, TV))

Grades TV

Grades TV 1(G, TV) f1(G, TV) f2(G, TV) f3(G, TV) f4(G, TV)

bad none 2.0 1 0 0 0

good none 3.0 0 1 0 0

bad lots 3.0 0 0 1 0

good lots 1.0 0 0 0 1

w1 = ln 2.0 w2 = ln 3.0 w3 = ln 3.0 w4 = ln 1.0

Log-linear Formulation (2 of 2)

 P(x) = exp(i wi fi (Di))

Z

 Why?

 “Feature” fi can be simpler than full potentials

 Learning easy to express

Learning in Markov Networks

 Harder than in Bayes Nets

 Why? In Bayes Nets, likelihood is:

 P(Data |) = m Datai P(Xi[m]| Parents(Xi)[m] : i)

where Xi[m] is the assignment to Xi in example m

= i m Data P(Xi[m]| Parents(Xi)[m] : i)

 Assuming param independence, maximize global likelihood
by maximizing each CPT likelihood
m Data P (Xi[m] | Parents(Xi)[m] : i) independently

Learning in Markov Networks

 Harder than in Bayes Nets

 In Markov Net,

Likelihood =

P(Data | w) = m Data exp(i wifi (Di[m]))

Zw

 But Zw = x Val(X) exp(i wifi (x))

 Sum over exps involving all wi

 Can’t decompose as we did in Bayes Net case

So what do we do?

 Maximize likelihood using Gradient Ascent

 Or 2nd order optimization

 / wi ln P(Data | w) = EData[fi (Di)] - Ew[fi]

 Concave (no local maxima)

 Requires inference at each step

 Slow

Approximation: Pseudo-likelihood

 Pseudo-likelihood PL(Data |) =

m Datai P(Xi[m]| Neighbors(Xi)[m] : i)

 Assume variables depend only on values of neighbors in data

 No more Z!

 Easier to compute/optimize (decomposes)

 But not necessarily a great approximation

 Equal to likelihood in limit of infinite training data

Discriminative Training

 Learn P(Y | X)

 / wi ln P(YData |XData, w) =

m (fi (y[m], x[m]) - Ew[fi | x[m]])

 Rightmost term: run inference for each value x[m] in data

What have we learned?

 General Rules of Thumb in Learning

 Learning in Graphical Models

 Parameters in Bayes Nets

 Briefly: Continuous conditional distributions in Bayes Nets

 Bias vs. Variance

 Discriminative vs. Generative training

 Parameters in Markov Nets

Rest of course

 Next:

 Structure Learning

 After that:

 learning with missing data (semi-supervised learning), HMMs

