Basics of Probability

Events

- Event space Ω
- E.g. for dice, $\Omega=\{1,2,3,4,5,6\}$
- Set of measurable events $S \subseteq 2^{\Omega}$

- E.g.,
$\alpha=$ event we roll an even number $=\{2,4,6\} \in S$
- S must:
- Contain the empty event \varnothing and the trivial event Ω
- Be closed under union \& complement
$\square \alpha, \beta \in S \rightarrow \alpha \cup \beta \in S \quad$ and $\quad \alpha \in S \rightarrow \Omega-\alpha \in S$

Probability Distributions

- A probability distribution P over (Ω, S) is a mapping from S to real values such that:

Probability Distributions

Can visualize probability as fraction of area

Probability: Interpretations \& Motivation

- Interpretations: Frequentist vs. Bayesian
- Why use probability for subjective beliefs?
- Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 193I]
- Example: $P(A)=0.6, P(\operatorname{not} A)=0.8$?
- Example: $P(A)>P(B)$ and $P(B)>P(A)$?

Random Variables

- A random variable is a function from Ω to a value
- A partition of the event space Ω
- A short-hand for referring to attributes of events
- Examples
- $\Omega=\{1,2,3,4,5,6\}$

DieRollEven $\in\{$ true, false\}

- $\Omega=$ \{all possible hmwk/exam grade combinations\}

FinalGrade $\in\{a, b, c\}$

Joint Distributions

| Grade | Interest | Course load | $P(C, I, C)$ |
| :---: | :---: | :---: | :---: | :---: |
| a | high | full-time | 0.10 |
| a | high | part-time | 0.08 |
| a | low | full-time | 0.03 |
| a | low | part-time | 0.04 |
| b | high | full-time | 0.07 |
| b | high | part-time | 0.02 |
| b | low | full-time | 0.12 |
| b | low | part-time | 0.16 |
| c | high | full-time | 0.01 |
| c | high | part-time | 0.02 |
| c | low | full-time | 0.20 |
| c | low | part-time | 0.15 |

Conditioning!

Conditioning!

| Grade | Interest | Course load | $P(G, 1, C)$ |
| :---: | :---: | :---: | :---: | :---: |
| a | high | full-time | $0.10 / 0.53$ |
| a | low | full-time | $0.03 / 0.53$ |
| b | high | full-time | $0.07 / 0.53$ |
| b | low | full-time | $0.12 / 0.53$ |
| c | high | full-time | $0.01 / 0.53$ |
| c | low | full-time | $0.20 / 0.53$ |

Conditioning!

Grade	Interest	Course load	$P(G, \\| C=1)$
a	high	full-time	0.21
a	low	full-time	0.09
b	high	full-time	0.14
b	low	full-time	0.09
c	high	full-time	0.26
c	low	full-time	0.21

Conditional Probability

- $\mathrm{P}($ Grade $=\mathrm{A} \mid$ Interest $=\mathrm{High})=0.6$
> the probability of getting an A given only Interest $=$ High, and nothing else.
- If we know Motivation = High or OtherInterests = Many, the probability of an A changes even given high Interest
- Formal Definition:

$$
\begin{aligned}
& \mathrm{P}(\alpha \mid \beta)=\mathrm{P}(\alpha, \beta) / \mathrm{P}(\beta) \\
& \quad \text { When } \mathrm{P}(\beta)>0
\end{aligned}
$$

Conditional Probability

- Also:
- $P(A \mid B, C)=P(A, B, C) / P(B, C)$
- More generally:
> $P(A \mid B)=P(A, B) / P(B)$
- (Boldface indicates vectors of variables)
- P(Grade = A | Grade = A, Interest = high) ?

Marginalization

Grade	Interest	Course load	$P(G, 1, C)$
a	high	full-time	0.10
a	high	part-time	0.08
a	low	full-time	0.03
a	low	part-time	0.04
b	high	full-time	0.07
b	high	part-time	0.02
b	low	full-time	0.12
b	low	part-time	0.16
c	high	full-time	0.01
c	high	part-time	0.02
c	low	full-time	0.20
c	low	part-time	0.15

Marginalization

Grade	Interest	Course load	$P(G, 1, C)$
a	high	$*$	0.10
a	high	$*$	0.08
a	low	$*$	0.03
a	low	$*$	0.04
b	high	$*$	0.07
b	high	$*$	0.02
b	low	$*$	0.12
b	low	$*$	0.16
c	high	$*$	0.01
c	high	$*$	0.02
c	low	$*$	0.20
c	low	$*$	0.15

Marginalization

Grade	Interest	Course load	$P(G, 1)$
a	high	$*$	0.18
a	low	$*$	0.07
b	high	$*$	0.09
b	low	$*$	0.28
c	high	$*$	0.03
c	low	$*$	0.35

Marginalization

Grade	Interest	$P(G, l)$
a	high	0.18
a	low	0.07
b	high	0.09
b	low	0.28
c	high	0.03
c	low	0.35

Marginalization

$$
P(X)=\sum_{y \in \operatorname{Val}(Y)} P(X, Y=y)
$$

Continuous Random Variables

- For continuous r.v. X, specify a density $p(x)$, such that:

$$
\begin{aligned}
& \text { E.g., } P(r \leq X \leq s)=\int_{x=r}^{s} p(x) d x \\
& p(x)=\left\{\begin{array}{cl}
\frac{1}{b-a} & b \geq x \geq a^{\frac{1}{b-a}} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Uniform Continuous Density

Gaussian Density

- $p(x)=$

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Joint Distribution

Joint Distribution specified with $2 * 3-I=5$ values

Conditional Probability

		Interest	
		low	high
Grade	a	0.07	0.18
	b	0.28	0.09
	c	0.35	0.03

$\mathrm{P}($ Grade $=\mathrm{a} \mid$ Interest $=$ high $)$?
$\mathrm{P}($ Grade $=$ a, Interest $=$ high $)=0.18$
$\mathrm{P}($ Interest $=$ high $)=0.18+0.09+0.03=0.30$
$=>\mathrm{P}($ Grade $=\mathrm{a} \mid$ Interest $=$ high $)=0.18 / 0.30=0.6$

Conditional Probability

		Interest	
		low	high
	a	0.07	0.18
Grade	b	0.28	0.09
	c	0.35	0.03

P(Interest | Grade = a)?

	Interest
low	high
0.28	0.72

Conditional Probability

P(Interest | Grade)?
Actually three separate distributions, one for each Grade value
(has three independent parameters total)

Chain Rule

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)= \\
& \qquad \prod_{i=1}^{n} \mathrm{P}\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}, \ldots, X_{1}=x_{1}\right)
\end{aligned}
$$

- E.g., P(Grade=b, Int. = high) = P(Grade=b | Int. = high)P(Int. = high)
- Can be used for distributions...
- $P(A, B)=P(A \mid B) P(B)$

Handy Rules for Cond. Probability (1 of 2)

- $P(A \mid B=b)$ is a single distribution, like $P(A)$
- $P(A \mid B)$ is not a single distribution
- a set of $|\mathrm{Val}(B)|$ distributions

Handy Rules for Cond. Probability (2 of 2)

- Any statement true for arbitrary distributions is also true if you condition on a new r.v.
- $P(A, B)=P(A \mid B) P(B)$? (chain rule)

Then also $P(A, B \mid C)=P(A \mid B, C) P(B \mid C)$

- Likewise, any statement true for arbitrary distributions is also true if you replace an r.v. with two/more new r.v.s
- $P(A \mid B)=P(A, B) / P(B)$? (def. of cond. Prob)
- $P(A \mid C, D)=P(A, C, D) / P(C, D)$ or $P(A \mid B)=P(A, B) / P(B)$

Independence

- P (Rain | Cloudy) $=\mathrm{P}$ (Rain)
- But: P(FairDie=6 | PreviousRoll=6) $=\mathrm{P}($ FairDie=6 $)$
- We say A and B are independent iff

$$
P(A \mid B)=P(A)
$$

- Logically equivalent to $P(A, B)=P(A) * P(B)$
- Denoted $A \perp B$

Conditional Independence (1 of 2)

- A and B are conditionally independent given C iff

$$
P(A \mid B, C)=P(A \mid C)
$$

- Equivalent to $P(A, B \mid C)=P(A \mid C) P(B \mid C)$
- Denoted $(A \perp B \mid C)$

Conditional Independence (2 of 2)

- Example: university admissions
- Val(GetIntoX) = \{yes, no, wait\}
- $\operatorname{Val}($ Application $)=\{$ good, bad $\}$
$3 * 3 * 2 * 2=36$ Parameters
P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application)

P(GetIntoNU | Application)
2*2=4 Parameters

Properties of Conditional Independence

- Decomposition

$$
\text { - } \boldsymbol{X} \perp \boldsymbol{Y}, \boldsymbol{W} \mid \boldsymbol{Z})=>(X \perp \boldsymbol{Y} \mid \boldsymbol{Z})
$$

- Weak Union

$$
(X \perp Y, W \mid Z)=>(X \perp Y \mid Z, W)
$$

- Contraction
- $(X \perp W \mid Z, Y) \&(X \perp Y \mid Z)=>(X \perp Y, W \mid Z)$

Expectation

- Discrete

$$
E_{P}[X]=\sum_{x} x P(x)
$$

- Continuous

$$
E_{P}[X]=\int x p(x) d x
$$

- E.g., E[FairDie]=3.5

Expectation is Linear

$$
\begin{aligned}
& E_{P}[X+Y]=\sum_{x, y}(x+y) P(x, y) \\
& =\sum_{x, y} x P(x, y)+\sum_{x, y} y P(x, y) \\
& =\sum_{x} x \sum_{y} P(x, y)+\sum_{y} y \sum_{x} P(x, y) \\
& =\sum_{x} x P(x)+\sum_{y} y P(y)=E_{P}[X]+E_{P}[Y]
\end{aligned}
$$

Fun with Expectation

BALLMER: For years, I used this one quite a bit. I'd ask people to pick a number between one and a hundred. You get it on the first guess, I give you five bucks. Takes you two guesses, I give you four. Three, two, one, zero. Then you pay me a buck, you pay me two. Do you want to play or not?
GATES: And you're telling them if they're high or low?
BALLMER:I tell you high, low on your guess. Do you want to play or not?
GATES: And getting the right answer isn't the key thing, if the person can think about it in the right way.
BALLMER:You want to see that people can think in a disciplined, rational way.Although I will admit that someone once wrote down that this has an expected value of negative $2 I$ cents as soon as I finished talking. [Looks over at Gates, who's started to jot down numbers on a piece of paper.] Look he's working on the problem!
GATES: Just trying to get 2 I cents, that's all.

What have we learned?

- Probability - a calculus for dealing with uncertainty
- Built from small set of axioms (ignore at your peril)
- Joint Distribution P(A, B, C, ...)
, Specifies probability of all combinations of r.v.s
- Conditional Probability P(A $\operatorname{B})$
- Specifies probability of $A=a$ given $B=b$
- Conditional Independence
- Can radically reduce number of model parameters
- Expectation
- Next time: Bayes' Rule, Statistical Estimation

