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Inference: Answering Queries 
• Given: 

– A probability model 

– Subsets of random variables  
• Y (query) and  

• E (evidence) with assignments e to E 

• Find P(Y | E = e) 

• E.g.,  
– P(Battery | Starts = false) 

– P(Disease | Symptoms = e) 

– P(StockMarketCrash | RecentPriceActivity = e) 



What else can we do with queries? 

• Prioritizing info gathering 

– Which additional evidence would be most 
informative? 

• Explanation 

– Why do I need a new fan belt? 

• Sensitivity Analysis 

– Which variable values are most critical? 



Gee, it’s easy 

 

• P(Y  | E = e) = P(Y, e) 
                           P(e) 

 

• Given joint P(y, e, w), we can compute r.h.s. by 
summing out w, y 



But… 

• Naïve summing is costly 
 

 

 

– P(A, B, C, D) = P(A) P(B|A) P(C|B) P(D|C) 

 

• P(D) = A B C P(A) P(B|A) P(C|B) P(D|C) 
– 8 combinations, 8*3 = 24 multiplications 

– Exponential in # of variables 

 

A C B D 



Variable Elimination 

 

 

 

 P(D) = A B C P(A) P(B|A) P(C|B) P(D|C) 
          
         = C P(D|C) B P(C|B) A P(B|A) P(A)  

     

        

A C B D 

P(B) 



Variable Elimination 

 

 

 

 P(D) = A B C P(A) P(B|A) P(C|B) P(D|C) 
          
     = C P(D|C) B P(C|B) A P(B|A) P(A)  

Has 4+4+4=12 multiplications (vs. 24) 

– For n-edge binary chain, only 4n multiples 
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With evidence 

 

 

 

 P(D|A=a) = B C P(B|A=a) P(C|B) P(D|C) 
          
     = C P(D|C) B P(C|B) P(B|A=a) 

A C B D 



Variable Elimination 

• Two steps: 

– Push summations as far as possible to right 
(assuming some ordering of variables) 

– Compute the sum 

 P(D|A=a) = B C P(D|C) P(C|B) P(B|A=a)  
          
     = C P(D|C) B P(C|B) P(B|A=a) 



“Factors” 

• P(A, B, C, D)  
= P(A) P(C) P(B | A, C)P(D | C) 

 

 

 

• Scope [4] = {D, C} 

• Variable Elimination: write out joint as factors 

–  factor i out of sum over X when X scope [i]  
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Discarding non-Ancestors 

• P(A, B, C, D)  
= P(A) P(C) P(B | A, C)P(D | C) 

• Query: P(B, C | A=a) 

   = D P(A=a) P(C) P(B | A=a, C)P(D | C) 
= P(A=a) P(C) P(B | A=a, C) D P(D | C)  

• D P(D | C) = 1 for all C, we can ignore it 

• In general: when computing P(Y | E) we can 
ignore nodes not in Ancestors(Y, E) 
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Discard by separation in Markov 
Network 

• P(A, B, C, D, E)  
= P(E) P(A|E) P(C) P(B | A, C)P(D | C) 

• Query: P(B, C | A=a) 

– Throw out variables separated from query by 
evidence in moral graph 
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Semantics of summed-out factors 

• Sums don’t always correspond to simple 
conditional probabilities 



Complexity of Inference 

• What does variable elimination buy us? 

• It depends on the network 

– If the distribution doesn’t factor well, elimination 
won’t help 

• Generally, Bayesian Inference is hard 

• NP-complete problems can be reduced to it 



Reduction to Boolean Satisfiability (1) 

• Boolean Satisfiability 

– Given a boolean formula in 3-CNF, e.g.: 
(x1 v -x3 v x7) ^ (x4 v x5 v -x6) 

^ … 

Is there an assignment to variables (i.e. xi = 
true|false) make the formula true? 



Reduction to Boolean Satisfiability (2) 

• (x1 v -x3 v x7) ^ (x4 v x5 v -x6) 

– Let Qi = xi 

– Ci = clauses (e.g.(x1 v -x3 v x7)) 

– X = 1 iff all Ci are true,      Ai = “and” variables 



Inference complexity details 

• Actually #P-complete 

– Asking for probability like counting number of 
satisfying assignments 

• Even approximation is NP-hard  

• (see book) 


