Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks (briefly; we'll come back to this)
- Inference
- Learning
- Semi-supervised Learning, Hidden Markov Models
- Papers on active learning

Inference: Variable Elimination

Doug Downey Northwestern EECS 395/495 Fall 2011

Inference: Answering Queries

- Given:
 - A probability model
 - Subsets of random variables
 - Y (query) and
 - E (evidence) with assignments e to E
- Find P(**Y** | **E** = **e**)
- E.g.,
 - P(Battery | Starts = false)
 - P(Disease | Symptoms = e)
 - P(StockMarketCrash | RecentPriceActivity = e)

What else can we do with queries?

- Prioritizing info gathering
 - Which additional evidence would be most informative?
- Explanation
 - Why do I need a new fan belt?
- Sensitivity Analysis
 - Which variable values are most critical?

Gee, it's easy

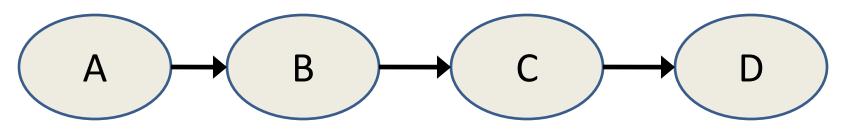
•
$$P(Y | E = e) = P(Y, e)$$

 $P(e)$

 Given joint P(y, e, w), we can compute r.h.s. by summing out w, y

But...

• Naïve summing is costly



- P(A, B, C, D) = P(A) P(B|A) P(C|B) P(D|C)

• $P(D) = \Sigma_A \Sigma_B \Sigma_C P(A) P(B|A) P(C|B) P(D|C)$ - 8 combinations, 8*3 = 24 multiplications

– Exponential in # of variables

Variable Elimination $A \rightarrow B \rightarrow C \rightarrow D$

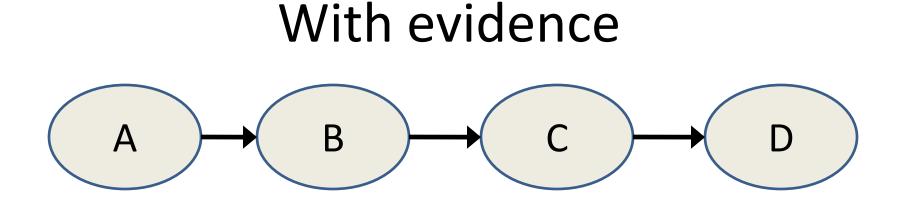
 $P(D) = \Sigma_A \Sigma_B \Sigma_C P(A) P(B|A) P(C|B) P(D|C)$

 $= \Sigma_{C} P(D|C) \Sigma_{B} P(C|B) \Sigma_{A} P(B|A) P(A)$ / P(B)

Variable Elimination $A \rightarrow B \rightarrow C \rightarrow D$

 $\mathsf{P}(D) = \Sigma_{\mathsf{A}} \Sigma_{\mathsf{B}} \Sigma_{\mathsf{C}} \mathsf{P}(A) \mathsf{P}(B|A) \mathsf{P}(C|B) \mathsf{P}(D|C)$

 $= \Sigma_{C} P(D|C) \Sigma_{B} P(C|B) \Sigma_{A} P(B|A) P(A)$ Has 4+4+4=12 multiplications (vs. 24) – For *n*-edge binary chain, only 4*n* multiples



 $P(D|A=a) = \Sigma_{B} \Sigma_{C} P(B|A=a) P(C|B) P(D|C)$

 $= \Sigma_{\rm C} P(D|C) \Sigma_{\rm B} P(C|B) P(B|A=a)$

Variable Elimination

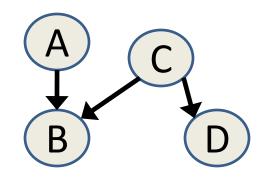
- Two steps:
 - Push summations as far as possible to right (assuming some ordering of variables)
 - Compute the sum

 $\mathsf{P}(D|A=a) = \Sigma_{\mathsf{B}} \Sigma_{\mathsf{C}} \mathsf{P}(D|C) \mathsf{P}(C|B) \mathsf{P}(B|A=a)$

 $= \Sigma_{C} P(D|C) \Sigma_{B} P(C|B) P(B|A=a)$

"Factors"

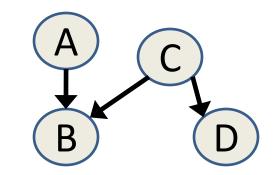
• P(A, B, C, D)= P(A) P(C) P(B | A, C) P(D | C) $\phi_1 \phi_2 \phi_3 \phi_4$



- Scope $[\phi_4] = \{D, C\}$
- Variable Elimination: write out joint as factors — factor ϕ_i out of sum over X when X \notin scope $[\phi_i]$

Discarding non-Ancestors

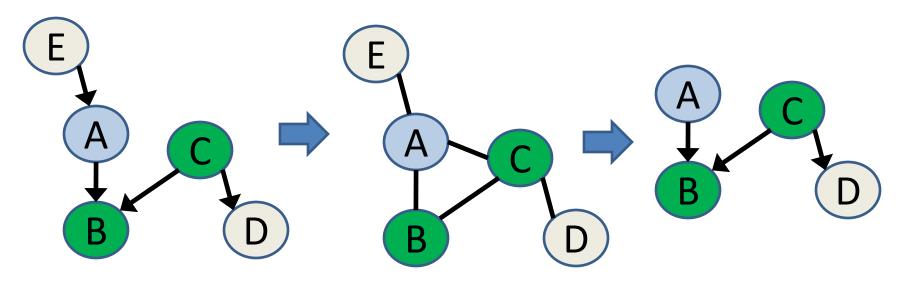
- P(A, B, C, D)= P(A) P(C) P(B | A, C)P(D | C)
- Query: *P*(*B*, *C* | *A*=a)



- $= \Sigma_{D} P(A=a) P(C) P(B \mid A=a, C) P(D \mid C)$ $= P(A=a) P(C) P(B \mid A=a, C) \Sigma_{D} P(D \mid C)$
- $\Sigma_D P(D \mid C) = 1$ for all C, we can ignore it
- In general: when computing P(Y | E) we can ignore nodes not in Ancestors(Y, E)

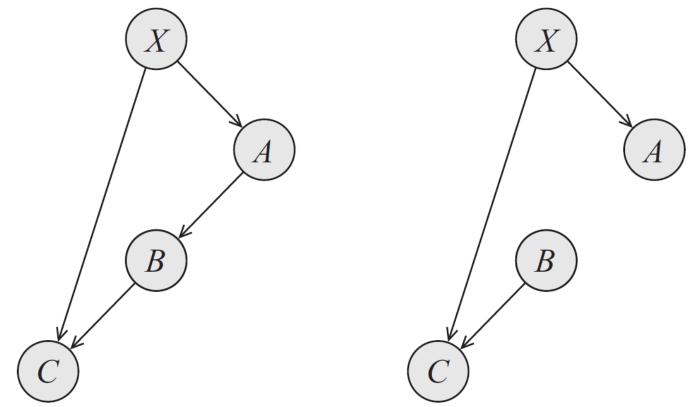
Discard by separation in Markov Network

- P(A, B, C, D, E)= P(E) P(A | E) P(C) P(B | A, C)P(D | C)
- Query: *P*(*B*, *C* | *A*=a)
 - Throw out variables separated from query by evidence in moral graph



Semantics of summed-out factors

 Sums don't always correspond to simple conditional probabilities



Complexity of Inference

- What does variable elimination buy us?
- It depends on the network
 - If the distribution doesn't factor well, elimination won't help
- Generally, Bayesian Inference is hard
- NP-complete problems can be reduced to it

Reduction to Boolean Satisfiability (1)

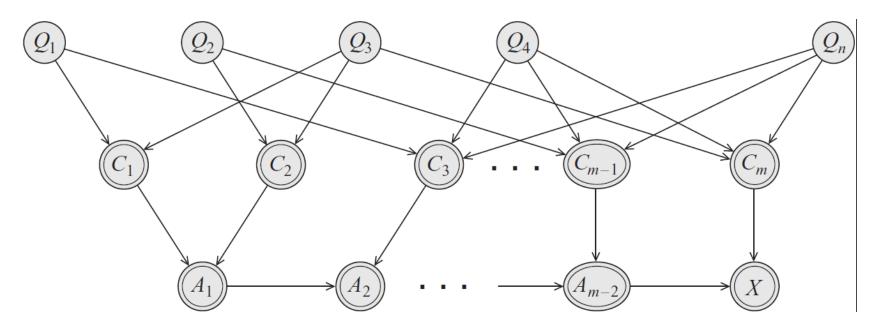
- Boolean Satisfiability
 - Given a boolean formula in 3-CNF, e.g.: (x1 x - x3 x x7) ^ (x4 x x5 x - x

(x1 v -x3 v x7) ^ (x4 v x5 v -x6) ^ ...

Is there an assignment to variables (i.e. xi = true|false) make the formula true?

Reduction to Boolean Satisfiability (2)

- (x1 v -x3 v x7) ^ (x4 v x5 v -x6) - Let Q_i = xi
 - $-C_i = \text{clauses}(e.g.(x1 v -x3 v x7))$
 - $\mathbf{X} = 1$ iff all \mathbf{C}_{i} are true, $A_{i} =$ "and" variables



Inference complexity details

- Actually #P-complete
 - Asking for probability like counting number of satisfying assignments
- Even approximation is NP-hard
- (see book)