Structure Learning

Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks
- Inference
- Learning
 - Parameters, Structure, EM
- HMMs

- Hard problem
 - Finding the BN structure with the highest "score" among those structures with at most k parents is NP hard for k>1 (Chickering, 1995)
- Inputs
 - Data (potentially incomplete)
- Outputs
 - Graphical model structure (we'll focus on Bayes Nets)
- Approaches
 - Constraint-based
 - Score-based approaches
 - Local search
 - Bayesian Model Averaging

- Hard problem
 - Finding the BN structure with the highest "score" among those structures with at most k parents is NP hard for k>1 (Chickering, 1995)
- Inputs
 - Data (potentially incomplete)
- Outputs
 - Graphical model structure (we'll focus on Bayes Nets)
- Approaches
 - Constraint-based
 - Score-based approaches
 - Local search
 - Bayesian Model Averaging

Constraint-based Approaches

- Idea: we know how to construct a Bayes Net if we can perform independence tests
 - (A \perp B | C) ?
- Naïve construction
 - depends on variable ordering
 - Issues potentially large independence queries
- A more sophisticated PDAG construction process works better (see book)

Constraint-based approach guarantees

- Can uncover a *perfect* map using a polynomial # of tests if:
 - Bounded in-degree d in G^* (true graph)
 - Perfect independence queries up to size 2d + 2 (Strong)
 - P* (true dist.) is *faithful* to G* (Also strong)
 - i.e., any independencies in P* reflected as d-separation in G*

- Approaches
 - Constraint-based
 - Score-based approaches
 - Local search
 - Bayesian Model Averaging

Scoring Structures

- Maximum likelihood G
 - Choose $G = \arg \max_{G} \max_{\theta} P(\text{Data} | \theta)$
- Or MAP:

- Choose $G = \arg \max_{G} \max_{\theta} P(\text{Data} \mid \theta) P(\theta)$

• ...what's wrong with these?

Bayesian Score

- Bayesian Score for G =

 prior for G
 +

 likelihood integrated over all parameters for G
- BayesianScore(G : Data) = log P(Data | G) + log P(G)
- P(Data | G) = $\int_{\Theta_G} P(Data | \theta_G, G) P(\theta_G | G) d\theta_G$

Integrating over parameters

Training (x-axis) vs. Test (y-axis) Perf.

Bayesian Information Criterion

• Bayes Score includes:

- P(Data | G) = $\int_{\Theta_G} P(Data | \theta_G, G) P(\theta_G | G) d\theta_G$

- Integral sometimes difficult
- Approximation:

 $score_{BIC}(G) = -Dim[G] \log M + 2 \log \max_{\theta_{C}} P(Data | \theta_{G})$

Structure search

 Finding the BN structure with the highest score among those structures with at most k parents is NP hard for k>1 (Chickering, 1995)

Structure priors

- Lots of options
 - All possible structures equally likely
 - Partial ordering, required / prohibited arcs
 - Prior(G) α Similarity(G, Gprior)

- Approaches
 - Constraint-based
 - Score-based approaches
 - Local search
 - Bayesian Model Averaging

Bayesian Model Averaging

• Previous methods all find a single graph G

• *Bayesian model averaging* instead makes predictions by averaging over structures:

P(test example | Data) = $\sum_{G} P(\text{test example | Data, G}) P(G | Data)$