Naïve Bayes Classifiers

Doug Downey

Northwestern EECS 395/495: Special
Topics in Machine Learning
Winter 2010

Naïve Bayes Classifiers

- Combines all ideas we've covered
- Conditional Independence
- Bayes' Rule
- Statistical Estimation
- Machine Learning
- ...in a simple, yet empirically powerful classifier
- Classifier: Function $f(x)$ from $X=\{<x 1, \ldots, x d>\}$ to Class
- E.g., $\boldsymbol{X}=\{<$ GRE, GPA, Letters $>\}$, Class $=\{y e s$, no, wait $\}$

Probability => Classification (1 of 2)

- Classification Task:
- Learn function $f(x)$ from $\boldsymbol{X}=\{<x 1, \ldots, x d>\}$ to Class
- Given: Examples $D=\{(\boldsymbol{x}, \boldsymbol{y})\}$
- Probabilistic Approach
- Learn $\mathrm{P}($ Class $=\boldsymbol{y} \mid \boldsymbol{X}=\boldsymbol{x})$ from D
- Given \boldsymbol{x}, pick the maximally probable \boldsymbol{y}

Probability => Classification (2 of 2)

- More formally
- $\mathrm{f}(\boldsymbol{x})=\arg \max _{y} \mathrm{P}\left(\right.$ Class $\left.=\boldsymbol{y} \mid \boldsymbol{X}=\boldsymbol{x}, \boldsymbol{\theta}_{\mathrm{MAP}}\right)$
- $\boldsymbol{\theta}_{\text {MAP }}$: MAP parameters, learned from data - That is, parameters of $\mathrm{P}($ Class $=\boldsymbol{y} \mid \boldsymbol{X}=\boldsymbol{x})$
- ...we'll focus on using MAP estimate, but can also use ML or Bayesian
- Predict next coin flip? Instance of this problem
$-X=$ null
- Given $D=$ hhht...tht, estimate $P(\theta \mid D)$, find MAP
- Predict Class $=$ heads iff $\theta_{\text {MAP }}>1 / 2$

Example: Text Classification

> Dear Sir/Madam,
> We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: $8 / 163 / E L-35$, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8$36-4-22$ which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

- SPAM

NOT SPAM?

Representation

- $\boldsymbol{X}=$ document
- Estimate $\mathrm{P}($ Class $=\{$ spam, non-spam $\} \mid X)$
- Question: how to represent \boldsymbol{X} ?
- One dimension for each possible e-mail, i.e. possible permutation of words?
- No.
- Lots of possibilities, common choice: "bag of words"

```
Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners
International programs held on the 30/8/2004. Your e-mail address
attached to ticket number: EL-23133 with serial Number: EL-
123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318
and drew lucky numbers 7-1-8-36-4-22 which consequently won in
the 1st category, you have therefore been approved for a lump sum
pay out of US$1,500,000.00 (One Million, Five Hundred Thousand
United States dollars)
```

Sir	1
Lottery	10
Dollars	7
With	38
\ldots	

Bag of Words

- Ignores Word Order, i.e.
- No emphasis on title
- No compositional meaning ("Cold War" -> "cold" and "war")
- Etc.
- But, massively reduces dimensionality/complexity
- Still and all...
- Recording presence or absence of a 100,000-word vocab entails $2^{\wedge} 100,000$ distinct vectors

Naïve Bayes Classifiers

- $P($ Class $\mid \boldsymbol{X})$ for $|\operatorname{Val}(\boldsymbol{X})|=2^{\wedge} 100,000$ requires 2^100,000 parameters
- Problematic.
- Bayes' Rule:

$$
P(\text { Class } \mid \boldsymbol{X})=P(\boldsymbol{X} \mid \text { Class) } \mathrm{P}(\text { Class }) / \mathrm{P}(\boldsymbol{X})
$$

- Assume presence of word i is independent of all other words given Class:

$$
P(\text { Class } \mid \boldsymbol{X})=\Pi_{i} \mathrm{P}\left(w_{i} \mid \text { Class }\right) \mathrm{P}(\text { Class }) / \mathrm{P}(\boldsymbol{X})
$$

- Now only 200,001 parameters for P(Class |X)

Naïve Bayes Assumption

- Features are conditionally independent given class
- Not P("Republican", "Democrat") $=P$ ("Republican") $P($ "Democrat") but instead
P ("Republican", "Democrat" | Class = Politics) = $P(" R e p u b l i c a n " \mid$ Class = Politics)P("Democrat" | Class = Politics)
- Generally an absurd assumption
- ("Lottery", "Winner" \perp SPAM)? ("lunch", "noon" \perp Not SPAM)?
- But: offers massive tractability advantages and works quite well in practice
- Lesson: Overly strong independence assumptions can be okay, and sometimes allow you to build a model where you otherwise couldn't

Getting the parameters from data

- Parameters $\boldsymbol{\theta}=<\theta_{i j}=\mathrm{P}\left(w_{i} \mid\right.$ Class $\left.=j\right)>$
- Maximum Likelihood: Estimate $\mathrm{P}\left(w_{i} \mid\right.$ Class $\left.=j\right)$ from D by counting
- Fraction of documents in class j containing word i
- But if word i never occurs in class j ?
- MAP estimate:
$-\frac{(\# \text { docs in class } j \text { with word } i)+1}{(\# \text { docs in class } j)+|V|}$
- A Dirichlet Prior with $\alpha_{i}=1$

Caveats

- Naïve Bayes effective as a classifier
- Not as effective in producing probability estimates
$-\Pi_{i} \mathrm{P}\left(w_{i} \mid\right.$ Class) pushes estimates toward 0 or 1
- In practice, numerical underflow is typical at classification time
- Compare sum of logs instead of product

