Naïve Bayes Classifiers

Doug Downey
Northwestern EECS 395/495: Special Topics in Machine Learning
Winter 2010
Naïve Bayes Classifiers

• Combines all ideas we’ve covered
 – Conditional Independence
 – Bayes’ Rule
 – Statistical Estimation
 – Machine Learning

• ...in a simple, yet empirically powerful classifier
 – Classifier: Function $f(x)$ from $\mathbf{X} = \{<x_1, \ldots, x_d>\}$ to Class
 – E.g., $\mathbf{X} = \{<\text{GRE, GPA, Letters}>\}$, $\text{Class} = \{\text{yes, no, wait}\}$
Probability => Classification (1 of 2)

• Classification Task:
 – Learn function \(f(x) \) from \(X = \{<x_1, \ldots, x_d>\} \) to Class
 – Given: Examples \(D=\{(x, y)\} \)

• Probabilistic Approach
 – Learn \(P(Class = y \mid X = x) \) from \(D \)
 – Given \(x \), pick the maximally probable \(y \)
Probability => Classification (2 of 2)

• More formally
 • \(f(x) = \arg \max_y P(Class = y \mid X = x, \theta_{\text{MAP}}) \)
 – \(\theta_{\text{MAP}} \) : MAP parameters, learned from data
 • That is, parameters of \(P(Class = y \mid X = x) \)
 – ...we’ll focus on using MAP estimate, but can also use ML or Bayesian

• Predict next coin flip? Instance of this problem
 – \(X = \text{null} \)
 – Given \(D = \text{hhht...tht} \), estimate \(P(\theta \mid D) \), find MAP
 – Predict \(Class = \text{heads} \) iff \(\theta_{\text{MAP}} > \frac{1}{2} \)
Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

- SPAM

- NOT SPAM?
Representation

- $X = \text{document}$
- Estimate $P(\text{Class} = \{\text{spam}, \text{non-spam}\} \mid X)$
- Question: how to represent X?
 - One dimension for each possible e-mail, i.e. possible permutation of words?
 - No.
 - Lots of possibilities, common choice: “bag of words”

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

Sir: 1
Lottery: 10
Dollars: 7
With: 38
...
Bag of Words

• Ignores Word Order, i.e.
 – No emphasis on title
 – No compositional meaning ("Cold War" -> "cold" and "war")
 – Etc.
 – But, massively reduces dimensionality/complexity

• Still and all...
 – Recording presence or absence of a 100,000-word vocab entails $2^{100,000}$ distinct vectors
Naïve Bayes Classifiers

• $P(Class \mid X)$ for $|Val(X)| = 2^{100,000}$ requires $2^{100,000}$ parameters
 – Problematic.

• Bayes’ Rule:

 $P(Class \mid X) = P(X \mid Class) \cdot P(Class) / P(X)$

• Assume presence of word i is independent of all other words given $Class$:

 $P(Class \mid X) = \prod_i P(w_i \mid Class) \cdot P(Class) / P(X)$

• Now only 200,001 parameters for $P(Class \mid X)$
Naïve Bayes Assumption

• Features are conditionally independent given class
 – \(\text{Not } P(“\text{Republican”}, “\text{Democrat”}) = P(“\text{Republican”})P(“\text{Democrat”}) \)
 but instead
 \[P(“\text{Republican”}, “\text{Democrat”} \mid \text{Class} = \text{Politics}) = \]
 \[P(“\text{Republican”} \mid \text{Class} = \text{Politics})P(“\text{Democrat”} \mid \text{Class} = \text{Politics}) \]

• Generally an absurd assumption
 – (“Lottery”, “Winner” \(\perp \) SPAM)? (“lunch”, “noon” \(\perp \) Not SPAM)?

• But: offers massive tractability advantages and works quite well in practice
 – Lesson: Overly strong independence assumptions can be okay, and sometimes allow you to build a model where you otherwise couldn’t
Getting the parameters from data

• Parameters $\theta = < \theta_{ij} = P(w_i \mid Class = j) >$

• Maximum Likelihood: Estimate $P(w_i \mid Class = j)$ from D by counting
 – Fraction of documents in class j containing word i
 – But if word i never occurs in class j?

• MAP estimate:
 – $\frac{(\# \text{ docs in class } j \text{ with word } i) + 1}{(\# \text{ docs in class } j) + |V|}$

• A Dirichlet Prior with $\alpha_i = 1$
Caveats

• Naïve Bayes effective as a *classifier*

• **Not** as effective in producing probability estimates
 – $\prod_i P(w_i \mid Class)$ pushes estimates toward 0 or 1

• In practice, numerical underflow is typical at classification time
 – Compare sum of logs instead of product