Naïve Bayes Classifiers

Doug Downey Northwestern EECS 395/495: Special Topics in Machine Learning Winter 2010

Naïve Bayes Classifiers

- Combines all ideas we've covered
 - Conditional Independence
 - Bayes' Rule
 - Statistical Estimation
 - Machine Learning
- ... in a simple, yet empirically powerful classifier
 - Classifier: Function f(x) from X = {<x1, ..., xd>} to Class
 - E.g., X = {<GRE, GPA, Letters>}, Class = {yes, no, wait}

Probability => Classification (1 of 2)

- Classification Task:
 - Learn function f(x) from X = {<x1, ..., xd>} to Class
 - Given: Examples D={(x, y)}
- Probabilistic Approach
 - Learn P(Class = y | X = x) from D
 - Given **x**, pick the maximally probable y

Probability => Classification (2 of 2)

- More formally
 - $f(\mathbf{x}) = \arg \max_{y} P(Class = y | \mathbf{X} = \mathbf{x}, \boldsymbol{\theta}_{MAP})$
 - θ_{MAP} : MAP parameters, learned from data
 - That is, parameters of P(Class = y | X = x)
 - ...we'll focus on using MAP estimate, but can also use ML or Bayesian
- Predict next coin flip? Instance of this problem
 - X = null
 - Given D= hhht...tht, estimate P($\theta \mid D$), find MAP
 - Predict *Class* = heads iff θ_{MAP} > $\frac{1}{2}$

Example: Text Classification

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

• SPAM

NOT SPAM?

Representation

- **X** = document
- Estimate P(Class = {spam, non-spam} | X)
- Question: how to represent **X**?
 - One dimension for each possible e-mail, i.e. possible permutation of words?
 - No.
 - Lots of possibilities, common choice: "bag of words"

Dear Sir/Madam, We are pleased to inform you of the result of the Lottery Winners		Sir	1
International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-		Lottery	10
123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in	>	Dollars	7
the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand		With	38
United States dollars)		•••	

Bag of Words

- Ignores Word Order, i.e.
 - No emphasis on title
 - No compositional meaning ("Cold War" -> "cold" and "war")
 - Etc.
 - But, massively reduces dimensionality/complexity
- Still and all...
 - Recording presence or absence of a 100,000-word vocab entails 2^100,000 distinct vectors

Naïve Bayes Classifiers

- *P*(*Class* | *X*) for |Val(*X*)| = 2^100,000 requires
 2^100,000 parameters
 - Problematic.
- Bayes' Rule:
 P(*Class* | *X*) = P(*X* | *Class*) P(*Class*) / P(*X*)
- Assume presence of word *i* is independent of all other words given *Class*:
 P(*Class* | *X*) = Π_i P(*w_i* | *Class*) P(*Class*) / P(*X*)
- Now only 200,001 parameters for *P*(*Class* | **X**)

Naïve Bayes Assumption

- Features are conditionally independent given class
 - Not P("Republican", "Democrat") = P("Republican")P("Democrat") but instead
 - P("Republican", "Democrat" | Class = Politics) =
 - P("Republican" | Class = Politics)P("Democrat" | Class = Politics)
- Generally an absurd assumption
 - ("Lottery", "Winner" \perp SPAM)? ("lunch", "noon" \perp Not SPAM)?
- But: offers massive tractability advantages and works quite well in practice
 - Lesson: Overly strong independence assumptions can be okay, and sometimes allow you to build a model where you otherwise couldn't

Getting the parameters from data

- Parameters $\theta = \langle \theta_{ij} = P(w_i | Class = j) \rangle$
- Maximum Likelihood: Estimate P(w_i | Class = j) from
 D by counting
 - Fraction of documents in class *j* containing word *i*
 - But if word *i* never occurs in class *j* ?
- MAP estimate:
 - $\frac{(\# \text{ docs in class } j \text{ with word } i) + 1}{(\# \text{ docs in class } j) + |V|}$
- A Dirichlet Prior with $\alpha_i = 1$

Caveats

- Naïve Bayes effective as a *classifier*
- Not as effective in producing probability estimates
 Π_i P(w_i | Class) pushes estimates toward 0 or 1
- In practice, numerical underflow is typical at classification time
 - Compare sum of logs instead of product