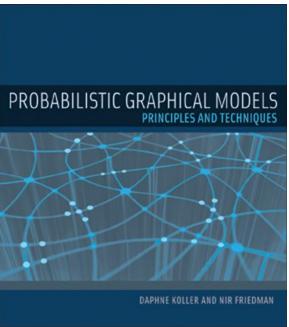
EECS 395/495-21: Special Topics in Computer Science

Winter 2010

Introductions

- Professor: Doug Downey
- TA: Jiang Xu
- Course web site:
 - www.cs.northwestern.edu/~ddowney/courses/395 Winter01/
 - (up soon will be linked off prof. home page)
- Watch for e-mail (to addr. in Blackboard)

Introductions


- Your Name
- Major/Degree
- One thing you hope to learn
- Do you want "more math" or "less math"?

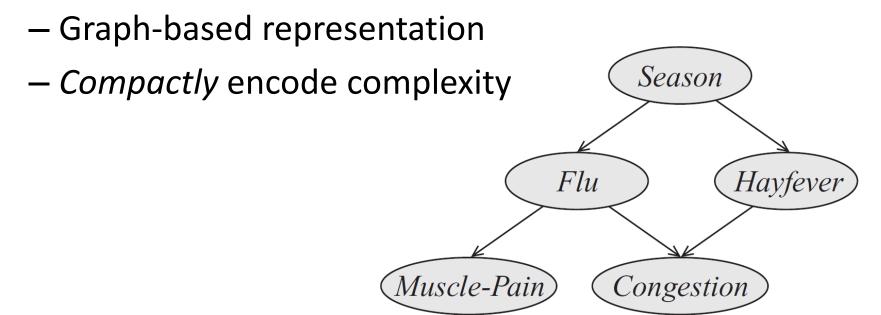
Logistics

- Grading
 - Homework (75%)
 - Handed out in weeks 1, 2, 4, 6, and 8
 - Exercises and programming
 - Several hands-on exercises will utilize a "target domain"
 - Pick a task of your choice
 - Hmwk exercises: acquire data, build models, analyze results
 - You can partner arbitrarily
 - Final (25%)
 - A lot like the homework

Textbook

D. Koller & N. Friedman,
 Probabilistic Graphical Models: Principles and Techniques
 MIT Press, 2009.

What's going on


- Artificial Intelligence
 - tremendous success in domains without a lot of uncertainty (e.g. chess)
 - But in the real world, uncertainty reigns
- We are awash in data
 - A crisis and an opportunity
- How can we deal with uncertainty? And how can we exploit massive bodies of data?

What the course is about

Probabilistic Models

 Deal with uncertainty: assign degree of confidence that different events will occur

Probabilistic Graphical Models

Goals

- Learn how to:
 - Build probabilistic models from data
 - Use the models to do work
 - Recognize opportunities for using models

- My focus
 - Interaction
 - Evaluation

Compared with Other Courses (1 of 2)

- EECS 349 vs. this class
 - EECS 349 is a prerequisite for this class
 - EECS 349 focuses on learning functions, we learn distributions
 - A single distribution captures many different functions!
 - EECS 349 more algorithmic, this class more mathematical

Compared with Other Courses (2 of 2)

- Statistics vs. this class
 - A few variables vs. tens of thousands
 - Continuous vs. discrete variables
 - Our focus: computational issues and applications
 - How can we scale to huge, multivariate data sets?
 - When and where are graphical models useful?

Applications

- Almost anything!
- E.g.,
 - Computational Biology
 - Robotics
 - Vision
 - Human-Computer Interaction
 - Networks and Systems
 - Information Retrieval/Web Search
 - Etc., etc.

Topics

- Basics of Probability and Statistical Estimation (briefly)
- Representing Probability Distributions as Graphs
 - Directed ("Bayes Nets") and Undirected ("Markov Nets")
- Working with Probabilistic Graphical Models
 - Inference: answering queries with a model
 - Learning: acquiring models from data
- Sequential Models (Hidden Markov Models)
- Time Allowing:
 - Active Learning, Decision Theory, Relational Models