Learning in Graphical Models

* Problem Dimensions

— Model

* Bayes Nets
* Markov Nets

— Structure

e Known

e Unknown (structure learning)

— Data

 Complete
* Incomplete (missing values or hidden variables)



Expectation-Maximization

e Last time:

— Basics of EM
— Learning a mixture of Gaussians (k-means)

e This time:
— Short story justifying EM

e Slides based on lecture notes from Andrew Ng

— Applying EM for semi-supervised document classification

— Homework #4


http://see.stanford.edu/materials/aimlcs229/cs229-notes8.pdf
http://see.stanford.edu/materials/aimlcs229/cs229-notes8.pdf

10,000 foot level EM

* Guess some parameters, then

— Use your parameters to get a distribution over
hidden variables

— Re-estimate the parameters as if your distribution
over hidden variables is correct

* Seems magical. When/why does this work?



Jensen’s Inequality

* For f convex, E[f(X)] >= fIE[X])
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Maximizing likelihood

« x) = data, z') = hidden vars, 0= parameters
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 This lower bound is easier to maximize, but
— What is Q? What good is maximizing a lower bound?




What do we use for Q?

* EM: Given a guess 6,4 for @, improve it

* |dea: choose Q such that our lower bound
equals the true log likelihood at 6, :
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Ensure the bound is tight at 6,

* When does Jensen’s inequality hold exactly?



Ensure the bound is tight at 6,

* When does Jensen’s inequality hold exactly?
e Sufficient that

(i) (). g
log p(l_ - 0)

T Qu(2W)

be constant with respect to z!)

* Thus, choose Q(z") = p(z? | xV; 4,,,)




Putting it together

(E-step) For each i, set
Qi(2") = p(z"|2":0).
(M-step) Set
p(z(®), 20); g)

0 = arg max Y Y Qi(2)log

i (i)

Qi(zW)



For exponential family

* E step:

— Use @, to estimate expected sufficient statistics
over complete data

* M step

— Set 4,,, = ML parameters given sufficient statistics
e (Or MAP parameters)



EM in practice

* Local maxima
— Random re-starts, simulated annealing...

* Variants

— Generalized EM: increase (not nec. maximize)
likelihood in each step

— Approximate E-step (e.g. sampling)



Semi-supervised Learning

 Unlabeled data abounds in the world

— Web, measurements, etc.

* labeled data is expensive

— Image classification, natural language processing, speech
recognition, etc. all require large #s of labels

* |dea: use unlabeled data to help with learning



Supervised Learning

Learn function from x = (x,, ..., x,) toy € {0, 1}
given labeled examples (x, y)




Semi-Supervised Learning (SSL)

Learn function from x = (x,, ..., x,) toy € {0, 1}
given labeled examples (x, y)
and unlabeled examples (x)




SSL in Graphical Models

* Graphical Model describes how data (x, y) is
generated

* Missing Data: y

* Souse EM



Example: Document classification with
Naive Bayes

P(z;|0) = ) P(c;|0)P(xi|c;: 0)

JE[M]

X; = count of word j in document
¢;= document class (sports, politics, etc.)
X;,= count of word i in docs of class t

P(x;10) > P(lzi]) Y Plesl0) T] Pluwele;:

J{: U Hi’&l

M classes, W = || words

(from Semi-supervised Text Classification Using EM, Nigam, et al.)



Semi-supervised Training

* Initialize @ignoring missing data
* E-step:

— E[X,.t] = count of word j in docs of class t in training set
+ E y[count of word i in docs of class t in unlabeled data]

— E[#c,] = count of docs in class t in training
+ E y[count of docs of class t in unlabeled data]

* M-step:
— Set faccording to expected statistics above, l.e.:
* Py(w, | c,) =(E[x,]+1)/(W+Z Elx,])
* Py(c,) = (E[#c,] + 1)/ (Hwords + M)



Accuracy

Semi-supervised Learning
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When does semi-supervised learning
work?

 When a better model of P(x) -> a better model
of Py | x)

* Can’t use purely discriminative models

e Accurate modeling assumptions are key
— Consider: negative class



Accuracy
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Accuracy

Issue: negative class
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* NB*, EM* represent the negative class with the

Negative

optimal number of model classes (c/s)

Category NBI EMI NB* EM*
acq 86.9 81.3 88.0 (4) 93.1(10)
corn 94.6 93.2 96.0 (10) 97.2 (40)
crude 94.3 94.9 95.7 (13) 96.3 (10)
earn 94.9 95.2 95.9 (5) 95.7 (10)
grain 94.1 93.6 96.2 (3) 96.9 (20)
interest 91.8 87.6 95.3 (5) 95.8 (10)
money-fx 93.0 90.4 94.1 (3) 95.0 (15)
ship 94.9 94.1 96.3 (3) 95.9 (3)
trade 91.8 90.2 94.3 (5) 95.0 (20)
wheat 94.0 94.5 96.2 (4) 97.8 (40)



Problem: local maxima

“Deterministic Annealing”

OXY) = Y lor 3 P00

J‘:iE.XR (.’J:E[_-H]
+ Y log([P(yi = ¢5]0)P(x:]y: = ¢;:0)]7)

* Slowly increase

Results: works, but can end up confusing
classes (next slide)
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Homework #4 (1 of 3)

What if we don’t know the target classes in advance?

Example: Google Sets

Wait until query time to run EM? Slow.

Strategy: Learn a NB model in advance, obtain mapping from
examples->"classes”

Then at “query time” compare examples



Homework

4 (2 of 3)

Classify noun phrases based on context in text

— E.g. prime minister

CEO of

Model noun phrases (NPs) as P(z | w):

z=1

2

N

P(z | Canada) = [0.14

0.01]...

0.06

Experiment with different N

Query time input: “seeds” (e.g., Algeria, UK)
Output: ranked list of other NPs, using KL div.



Homework #4 (3 of 3)

Code: written in Java
You write ~5 lines

— (important ones)

Run some experiments

Homework also has a few written exercises
— Sampling



Road Map

Inference
Learning

— Parameters, Structure, EM
HMMs

Something else?

— Candidates: Active Learning, Decision Theory, Statistical Relational
Models...
Role of Probabilistic Models in the Financial Crisis?



