Learning in Graphical Models

- Problem Dimensions
 - Model
 - Bayes Nets
 - Markov Nets
 - Structure
 - Known
 - Unknown (structure learning)
 - Data
 - Complete
 - Incomplete (missing values or hidden variables)

Expectation-Maximization

- Last time:
 - Basics of EM
 - Learning a mixture of Gaussians (k-means)
- This time:
 - Short story justifying EM
 - Slides based on <u>lecture notes from Andrew Ng</u>
 - Applying EM for semi-supervised document classification
 - Homework #4

10,000 foot level EM

- Guess some parameters, then
 - Use your parameters to get a distribution over hidden variables
 - Re-estimate the parameters as if your distribution over hidden variables is correct
- Seems magical. When/why does this work?

Jensen's Inequality

• For *f* convex, *E*[*f*(*X*)] >= *f*(*E*[*X*])

Maximizing likelihood

• $x^{(i)} = \text{data}, z^{(i)} = \text{hidden vars}, \theta = \text{parameters}$

$$\sum_{i} \log p(x^{(i)}; \theta) = \sum_{i} \log \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta)$$
$$= \sum_{i} \log \sum_{z^{(i)}} Q_i(z^{(i)}) \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$
$$\geq \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

This lower bound is easier to maximize, but

 What is Q? What good is maximizing a lower bound?

What do we use for Q?

- EM: Given a guess $\theta_{\rm old}$ for θ , improve it
- Idea: choose Q such that our lower bound equals the true log likelihood at $\theta_{\rm old}$:

Ensure the bound is tight at $\theta_{\rm old}$

When does Jensen's inequality hold exactly?

Ensure the bound is tight at $\theta_{\rm old}$

- When does Jensen's inequality hold exactly?
- Sufficient that

$$\log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

be constant with respect to $z^{(i)}$

• Thus, choose $Q(z^{(i)}) = p(z^{(i)} | x^{(i)}; \theta_{old})$

Putting it together

(E-step) For each i, set

$$Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta).$$

(M-step) Set

$$\theta := \arg\max_{\theta} \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

For exponential family

- *E* step:
 - Use θ_n to estimate **expected** sufficient statistics over **complete** data
- M step
 - Set θ_{n+1} = ML parameters given sufficient statistics
 - (Or MAP parameters)

EM in practice

- Local maxima
 - Random re-starts, simulated annealing...
- Variants
 - Generalized EM: increase (not nec. maximize)
 likelihood in each step
 - Approximate E-step (e.g. sampling)

Semi-supervised Learning

- Unlabeled data abounds in the world
 - Web, measurements, etc.
- Labeled data is expensive
 - Image classification, natural language processing, speech recognition, etc. all require large #s of labels
- Idea: use unlabeled data to help with learning

Supervised Learning

Learn function from $\mathbf{x} = (x_1, ..., x_d)$ to $y \in \{0, 1\}$ given labeled examples (\mathbf{x}, y)

Semi-Supervised Learning (SSL)

Learn function from $\mathbf{x} = (x_1, ..., x_d)$ to $y \in \{0, 1\}$ given labeled examples (\mathbf{x}, y) and unlabeled examples (\mathbf{x})

SSL in Graphical Models

- Graphical Model describes how data (x, y) is generated
- Missing Data: y
- So use EM

Example: Document classification with Naïve Bayes

$$P(x_i|\theta) = \sum_{j \in [M]} P(c_j|\theta) P(x_i|c_j;\theta).$$

- x_i = count of word *i* in document
- c_j = document class (sports, politics, etc.)
- x_{it} = count of word *i* in docs of class *t*

$$\mathbf{P}(x_i|\theta) \propto \mathbf{P}(|x_i|) \sum_{j \in [M]} \mathbf{P}(c_j|\theta) \prod_{w_t \in \mathcal{X}} \mathbf{P}(w_t|c_j;\theta)^{x_{it}}$$

• M classes, $W = |\mathcal{X}|$ words (from Semi-supervised Text Classification Using EM, Nigam, et al.)

Semi-supervised Training

- Initialize θ ignoring missing data
- E-step:
 - $E[x_{it}]$ = count of word *i* in docs of class *t* in training set + E_{θ} [count of word *i* in docs of class *t* in unlabeled data]
 - $E[\#c_t]$ = count of docs in class t in training + E_{θ} [count of docs of class t in unlabeled data]
- M-step:
 - Set θ according to expected statistics above, I.e.:
 - $\mathsf{P}_{\theta}(w_t \mid c_t) = (E[x_{it}] + 1) / (W + \Sigma_i E[x_{it}])$
 - $P_{\theta}(c_t) = (E[\#c_t] + 1) / (\#words + M)$

Semi-supervised Learning

When does semi-supervised learning work?

- When a better model of P(x) -> a better model of P(y | x)
- Can't use purely *discriminative* models

Accurate modeling assumptions are key

 Consider: *negative* class

Good example

Issue: negative class

Negative

NB*, EM* represent the negative class with the optimal number of model classes (c_i's)

Category	NB1	EM1	NB*	EM*
acq	86.9	81.3	88.0 (4)	93.1 (10)
com	94.6	93.2	96.0 (10)	97.2 (40)
crude	94.3	94.9	95.7 (13)	96.3 (10)
earn	94.9	95.2	95.9 (5)	95.7 (10)
grain	94.1	93.6	96.2 (3)	96.9 (20)
interest	91.8	87.6	95.3 (5)	95.8 (10)
money-fx	93.0	90.4	94.1 (5)	95.0 (15)
ship	94.9	94.1	96.3 (3)	95.9 (3)
trade	91.8	90.2	94.3 (5)	95.0 (20)
wheat	94.0	94.5	96.2 (4)	97.8 (40)

Problem: local maxima

• "Deterministic Annealing"

$$l(\theta|X,Y) = \sum_{x_i \in X_u} \log \sum_{c_j \in [M]} [P(c_j|\theta)P(x_i|c_j;\theta)]^{\beta} + \sum_{x_i \in X_l} \log([P(y_i = c_j|\theta)P(x_i|y_i = c_j;\theta)]^{\beta})$$

- Slowly increase β
- Results: works, but can end up confusing classes (next slide)

Annealing performance

Homework #4 (1 of 3)

- What if we don't know the target classes in advance?
- Example: Google Sets
- Wait until query time to run EM? Slow.
- Strategy: Learn a NB model in advance, obtain mapping from examples->"classes"
- Then at "query time" compare examples

Homework #4 (2 of 3)

• Classify noun phrases based on *context* in text

-E.g. ____ prime minister CEO of _

Model noun phrases (NPs) as P(z | w):

$$P(z | Canada) = 0.14 | 0.01 | \dots | 0.06$$

- Experiment with different N
- Query time input: "seeds" (e.g., Algeria, UK)
 Output: ranked list of other NPs, using KL div.

Homework #4 (3 of 3)

- Code: written in Java
- You write ~5 lines

- (important ones)

• Run some experiments

Homework also has a few written exercises
 – Sampling

Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks
- Inference
- Learning
 - Parameters, Structure, EM
- HMMs
- Something else?
 - Candidates: Active Learning, Decision Theory, Statistical Relational Models...
 Role of Probabilistic Models in the Financial Crisis?