Basics of Probability

Lecture 1
Doug Downey, Northwestern EECS 395/495
Winter 2010

Events

- Event space Ω
- E.g. for dice, $\Omega=\{1,2,3,4,5,6\}$
- Set of measurable events $S \subseteq 2^{\Omega}$

- E.g.,
$\alpha=$ event we roll an even number $=\{2,4,6\} \in S$
- S must:
- Contain the empty event \varnothing and the trivial event Ω
- Be closed under union \& complement

$$
-\alpha, \beta \in S \rightarrow \alpha \cup \beta \in S \quad \text { and } \quad \alpha \in S \rightarrow \Omega-\alpha \in S
$$

Probability Distributions

- A probability distribution P over (Ω, S) is a mapping from S to real values such that:

$$
\begin{aligned}
& P(\alpha) \geq 0 \\
& P(\Omega)=1 \\
& \alpha, \beta \in S \wedge \alpha \cap \beta=\varnothing \rightarrow P(\alpha \cup \beta)=P(\alpha)+P(\beta)
\end{aligned}
$$

Probability Distributions

Can visualize probability as fraction of area

Probability: Interpretations \& Motivation

- Interpretations
- Frequentist
- Bayesian/subjective
- Why use probability for subjective beliefs?
- Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 1931]
- Example: $P(A)=0.6, P(\operatorname{not} A)=0.8$?
- Example: $P(A)>P(B)$ and $P(B)>P(A)$?

Random Variables (1 of 2)

- A random variable is a function from Ω to a value
- A short-hand for referring to attributes of events.
- E.g., your grade in this course
- Let $\Omega=$ set of possible scores on hmwks and final
- Cumbersome to have separate events GradeA, GradeB, GradeC
- So instead define a random variable Grade
- Deterministic function from Ω to $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

Random Variables (2 of 2)

- Denote P(GradeA) as P(Grade = A)
- Random variables will be in uppercase
- When r.v. clear from context, abbreviate (e.g. $P(A)$)
- $\operatorname{Val}(X)=$ set of values r.v. X can take
$-\operatorname{Val}($ Grade $)=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
- Conjunction
- Rather than write $\mathrm{P}(($ Grade $=\mathrm{A}) \cap($ Age $=21))$, we use $P($ Grade $=A$, Age $=21$) or just $P(A, 21)$.

Continuous Random Variables

- For continuous r.v. X, specify a density $p(x)$, such that:

$$
\begin{aligned}
& \qquad P(r \leq X \leq s)=\int_{x=r}^{s} p(x) d x \\
& \text { E.g., } \\
& p(x)=\left\{\begin{array}{cl}
\frac{1}{a-b} & a \geq x \geq b \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Uniform Continuous Density

Gaussian Density

- $p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$

Distributions

- Called "marginal" because they apply to only one r.v.

Joint Distribution

P(Intelligence, Grade)

Joint Distribution

		Intelligence	
		Low	High
Grade	A	0.07	0.18
	B	0.28	0.09
	C	0.35	0.03

Joint Distribution specified with 2*3-1=5 values

Joint Distribution

		Intelligence	
		Low	High
Grade	A	0.07	0.18
	B	0.28	0.09
	C	0.35	0.03

$\mathrm{P}($ Grade $=\mathrm{A}$, Intelligence $=$ Low $)$? 0.07

Joint Distribution

		Intelligence	
		Low	High
Grade	A	0.07	0.18
	B	0.28	0.09
	C	0.35	0.03

$P($ Grade $=A) ? \quad 0.07+0.18=0.25$

Joint Distribution

$\mathrm{P}($ Grade $=\mathrm{A} \vee$ Intelligence $=$ High $)$?

$$
0.07+0.18+0.09+0.03=0.37
$$

=> Given the joint distribution, we can compute probabilities for any proposition by summing events.

Conditional Probability

- $\mathrm{P}($ Grade $=\mathrm{A} \mid$ Intelligence $=\mathrm{High})=0.6$
- the probability of getting an A given only Intelligence = High, and nothing else.
- If we know Motivation = High or OtherInterests = Many, the probability of an A changes even given high Intelligence
- Formal Definition:
$-\mathrm{P}(\alpha \mid \beta)=\mathrm{P}(\alpha, \beta) / \mathrm{P}(\beta)$
- When $\mathrm{P}(\beta)>0$

Conditional Probability

- Also:

$$
-P(A \mid B, C)=P(A, B, C) / P(B, C)
$$

- More generally:
$-P(\boldsymbol{A} \mid \boldsymbol{B})=P(\boldsymbol{A}, \boldsymbol{B}) / P(\boldsymbol{B})$
- (Boldface indicates vectors of variables)
- $\mathrm{P}($ Grade $=\mathrm{A} \mid$ Grade $=\mathrm{A}$, Intelligence $=$ high $)$?
- P(CuriousGeorge | MonkeyWithVacuum, Cape)?

Conditional Probability

		Intelligence	
		Low	High
Grade	A	0.07	0.18
	B	0.28	0.09
	C	0.35	0.03

$\mathrm{P}($ Grade $=\mathrm{A} \mid$ Intelligence $=$ High $)$?
$\mathrm{P}($ Grade $=\mathrm{A}$, Intelligence $=\mathrm{High})=0.18$
$\mathrm{P}($ Intelligence $=$ High $)=0.18+0.09+0.03=0.30$
=> P(Grade $=\mathrm{A} \mid$ Intelligence $=$ High $)=0.18 / 0.30=\mathbf{0 . 6}$

Conditional Probability

		Intelligence	
		Low	High
Grade	A	0.07	0.18
	B	0.28	0.09
	C	0.35	0.03

$\mathrm{P}($ Intelligence | Grade $=\mathrm{A})$?

Intelligence	
Low	High
0.28	0.72

Conditional Probability

		Intelligence	
		Low	High
Grade	A	0.28	0.72
	B	0.76	0.24
	C	0.92	0.08

$\mathrm{P}($ Intelligence | Grade)?

Actually three separate distributions, one for each Grade value (has three independent parameters total)

Chain Rule

$$
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=
$$

$$
\prod_{i=1}^{n} \mathrm{P}\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}, \ldots, X_{1}=x_{1}\right)
$$

- E.g., P(Grade=B, Int. = High)

$$
\text { = P(Grade=B | Int.= High)P(Int. = High })
$$

- Can be used for distributions...
$-\mathrm{P}(A, B)=\mathrm{P}(A \mid B) \mathrm{P}(B)$

Handy Rules for Conditional

Probability

- $\mathrm{P}(A \mid B=b)$ is a single distribution, like $\mathrm{P}(A)$
- $\mathrm{P}(A \mid B)$ is not a single distribution - a set of $|\operatorname{Val}(B)|$ distributions
- Any statement true for arbitrary distributions is also true if you condition on a new r.v.
$-\mathrm{P}(A, B)=\mathrm{P}(A \mid B) \mathrm{P}(B)$? (chain rule)
Then also $\mathrm{P}(A, B \mid C)=\mathrm{P}(A \mid B, C) \mathrm{P}(B \mid C)$
- Likewise, any statement true for arbitrary distributions is also true if you replace an r.v. with two/more new r.v.s
$-P(A \mid B)=P(A, B) / P(B)$? (def. of cond. Prob)
$-\mathrm{P}(\boldsymbol{A} \mid C, D)=\mathrm{P}(A, C, D) / \mathrm{P}(C, D)$ or $\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B})=\mathrm{P}(\boldsymbol{A}, \boldsymbol{B}) / \mathrm{P}(\boldsymbol{B})$

Queries

- Given subsets of random variables \boldsymbol{Y} and E, and assignments \boldsymbol{e} to \boldsymbol{E}
- Find $\mathrm{P}(\boldsymbol{Y} \mid \boldsymbol{E}=\boldsymbol{e})$
- Answering queries = inference
- The whole point of probabilistic models, more or less
- P(Disease | Symptoms)
- P(StockMarketCrash | RecentPriceActivity)
- P(CodingRegion | DNASequence)
- P(PlayTennis | Weather)
- ...(the other key task is learning)

Answering Queries: Summing Out

		Intelligence $=$ Low		Intelligence=High	
		Time=Lots	Time=Little	Time=Lots	Time=Little
Grade	A	0.05	0.02	0.15	0.03
	B	0.14	0.14	0.05	0.0
	C	0.10	0.25	0.01	0.02

P(Grade \mid Time $=$ Lots $)$?
$\sum P($ Grade, Intelligen $c e=v \mid$ Time $=$ Lots $)$
$v \in \operatorname{Val}$ (Intelligen ce)

MAP Queries

- Given subsets of random variables \boldsymbol{Y} and \boldsymbol{E}, and assignments \boldsymbol{e} to E
- Find $\operatorname{MAP}(\boldsymbol{Y} \mid \boldsymbol{e})=\arg \max _{\boldsymbol{y}} \mathrm{P}(\boldsymbol{y} \mid \boldsymbol{e})$
- MAP stands for "maximum a posteriori"
- (more later)

Answering Queries: Solved?

- Given the joint distribution, we can answer any query by summing
- ...but, joint distribution of 500 Boolean variables has 2^500-1 parameters (about 10^150)
- For non-trivial problems (~ 25 boolean r.v.s or more), using the joint distribution requires
- Way too much computation to compute the sum
- Way too many observations to learn the parameters
- Way too much space to store the joint distribution

Conditional Independence (1 of 3)

- Independence
$-\mathrm{P}(A, B)=\mathrm{P}(A) * \mathrm{P}(B)$, denoted $A \perp B$
-E.g. consecutive dice rolls
- Gambler's fallacy
- Rare in (real) applications

Note: Book calls this "marginal independence" when applied to r.v.s, but just "independence" when applied to events

Conditional Independence (2 of 3)

- Conditional Independence
$-\mathrm{P}(A, B \mid C)=\mathrm{P}(A \mid C) \mathrm{P}(B \mid C)$, denoted $(A \perp B \mid C)$
- Much more common
- E.g., (GetIntoNU \perp GetIntoStanford | Application), but NOT (GetIntoNU \perp GetIntoStanford)

Conditional Independence (3 of 3)

- How does Conditional Independence save the day?

P(NU, Stanford, App) = $\mathrm{P}(N \mathrm{U} \mid$ Stanford, $A p p){ }^{*} \mathrm{P}($ Stanford $\mid A p p) * \mathrm{P}(A p p)$
Now, $(\boldsymbol{A} \perp \boldsymbol{B} \mid \boldsymbol{C})$ means $\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B}, \boldsymbol{C})=\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{C})$
So since ($N U \perp$ Stanford $\mid A p p$), we have P(NU, Stanford, App) = $\mathrm{P}(N \mathrm{~N} \mid A p p) * \mathrm{P}($ Stanford |App) *P(App)
Say $\operatorname{Val}(A p p)=\{$ Good, Bad $\}$ and $\operatorname{Val}($ School $)=\{$ Yes, No, Wait $\}$
All we need is $4+4+1=9$ numbers
(vs. $3 * 3 * 2-1=17$ for the full joint)

- Full joint has size exponential in \# of r.v.s Conditional independence eliminates this!

Properties of Conditional Independence

- Decomposition

$$
-(X \perp Y, W \mid Z)=>(X \perp Y \mid Z)
$$

- Weak Union

$$
-(X \perp Y, W \mid Z)=>(X \perp Y \mid Z, W)
$$

- Contraction

$$
-(X \perp W \mid Z, Y) \&(X \perp Y \mid Z)=>(X \perp Y, W \mid Z)
$$

Bayes' Rule

- $\mathrm{P}(A \mid B)=\mathrm{P}(B \mid A) \mathrm{P}(A) / \mathrm{P}(B)$
- Example:

Bayes' Rule

- $\mathrm{P}(A \mid B)=\mathrm{P}(B \mid A) \mathrm{P}(A) / \mathrm{P}(B)$
- Also:

$$
-\mathrm{P}(A \mid B, C)=\mathrm{P}(B \mid A, C) \mathrm{P}(A \mid C) / \mathrm{P}(B \mid C)
$$

- More generally:
$-\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B})=\mathrm{P}(\boldsymbol{B} \mid \boldsymbol{A}) \mathrm{P}(\boldsymbol{A}) / \mathrm{P}(\boldsymbol{B})$
- (Boldface indicates vectors of variables)

Terms for Bayes

- $\mathrm{P}($ Model \mid Data $)=\mathrm{P}($ Data | Model) $\mathrm{P}($ Model $) / \mathrm{P}($ Data $)$
- P(Model) : Prior
- P(Data | Model) : Likelihood
- P(Model | Data) : Posterior

What have we learned?

- Probability - a calculus for dealing with uncertainty
- Built from small set of axioms (ignore at your peril)
- Joint Distribution P(A, B, C, ...)
- Specifies probability of all combinations of r.v.s
- Intractable to compute exhaustively for non-trivial problems
- Conditional Probability P(A|B)
- Specifies probability of A given B
- Conditional Independence
- Can radically reduce number of variable combinations we must assign unique probabilities to.
- Bayes' Rule

