

Throw(person, x)?

Weight(x) < 50lbs ^ Max_dim(x) < 20ft ^ ... ^ =>Throw(person, x)

Weight(baseball) = 5oz ^.... => Throw(person, baseball)

"throwable objects such as"

Web	Images	Maps	Shopping	Books	More -	Search tools	

About 5,050 results (0.19 seconds)

Patent US5984812 - Grippable surface for throwable object - Google ... www.google.com/patents/US5984812

This invention relates to a grippable surface for **throwable objects such as** a football, baseball, etc. which enhances the ease with which the object may be ...

[PDF] Name Juggle.pdf - GOAL Consulting

www.goalconsulting.org/page3/files/Name%20Juggle.pdf <

Materials: Many soft **throwable objects such as** fleece balls, wadded up pieces of paper, Nerf[™] balls. Level: Grades K and higher. Suggested Procedure. 1.

Y, mayor of X

- The Web makes hard AI problems easier
- ...but

Understanding Language is Hard

Michael Bloomberg, mayor of New York City, was born in ...

Eric Johnson, CEO of **Texas** Instruments, mayor of Dallas from 1964-1971, and ...

Redundancy enables Information Extraction

Redundancy: Single Pattern

Consider a single pattern suggesting *C*, e.g.,

countries such as x

If an extraction x appears k times in a set of n distinct occurrences of the pattern, what is the probability that $x \in C$?

Redundancy: Single Pattern

C = **Country**

n = 10 occurrences

- "...countries such as Saudi Arabia..."
 "...countries such as the United States..."
 "...countries such as Saudi Arabia..."
 "...countries such as Japan..."
 "...countries such as Africa..."
- "....countries such as Japan..."
- "....countries such as the United Kingdom..."
- "....countries such as Iraq..."
- "....countries such as Afghanistan..."

"....countries such as Australia..."

Naïve Model: Noisy-Or

C = **Country**

<i>n</i> = 10	k	P _{noisy-or}
Saudi Arabia	2	0.99
Japan	2	0.99
United States	1	0.9
Africa	1	0.9
United Kingdom	1	0.9
Iraq	1	0.9
Afghanistan	1	0.9
Australia	1	0.9

[Agichtein & Gravano, 2000; Lin et al. 2003]

$$P_{\text{noisy-or}}(x \in C \mid x \text{ seen } k \text{ times})$$

$$= 1 - (1 - p)^k$$

p = probability pattern yields a
correct extraction, i.e.,

p = 0.9

Noisy-or ignores: -Sample size (*n*) -Distribution of *C*

Needed in Model: Sample Size

C =	Country
------------	---------

<i>n</i> = 10	k	P _{noisy-or}
Saudi Arabia	2	0.99
Japan	2	0.99
United States	1	0.9
Africa	1	0.9
United Kingdom	1	0.9
Iraq	1	0.9
Afghanistan	1	0.9
Australia	1	0.9

C = Country

<mark>n</mark> ~50,000	k	P _{noisy-or}
United States	3899	0.9999
China	1999	0.9999
• • •		
OilWatch Africa	1	0.9
Religion Paraguay	1	0.9
Chicken Mole	1	0.9
Republics of Kenya	1	0.9
Atlantic Ocean	1	0.9

As sample size increases, noisy-or becomes inaccurate.

Needed in Model: Distribution of C

C = **Country**

<i>n</i> ∼50,000	k	P _{noisy-or}	
United States	3899	0.9999	
China	1999	0.9999	$P_{\text{freq}}(x \in C \mid x \text{ seen } k \text{ times})$
••	•		•
OilWatch Africa	1	0.9	$-1 - (1 - n) \frac{\alpha k}{n}$
Religion Paraguay	1	0.9	$= \mathbf{I} - (\mathbf{I} - \mathbf{p})$
Chicken Mole	1	0.9	
Republics of Kenya	1	0.9	1
Atlantic Ocean	1	0.9	

Needed in Model: Distribution of C

C = **Country**

<i>n</i> ∼50,000	k	P _{freq}	
United States	3899	0.9999	
China	1999	0.99999	P _{freq} (x∈C x seen k times)
• • •	•		
OilWatch Africa	1	0.05	$-1 - (1 - n) \frac{\alpha k}{n}$
Religion Paraguay	1	0.05	$= \mathbf{I} - (\mathbf{I} - \mathbf{p})^{-1}$
Chicken Mole	1	0.05	
Republics of Kenya	1	0.05	
Atlantic Ocean	1	0.05	

Needed in Model: Distribution of C

-- -----

C = Country			C = CIty		
<i>n</i> ∼50,000	k	P _{freq}	<mark>n</mark> ∼50,000	k	P _{freq}
United States	3899	0.9999	New York	1488	0.9999
China	1999	0.9999	Chicago	999	0.9999
•••	•			••	
OilWatch Africa	1	0.05	El Estor	1	0.05
Religion Paraguay	1	0.05	Nikki	1	0.05
Chicken Mole	1	0.05	Ragaz	1	0.05
Republics of Kenya	1	0.05	Villegas	1	0.05
Atlantic Ocean	1	0.05	Northeastwards	1	0.05

Probability $x \in C$ depends on the distribution of C.

Solution: URNS Model

...cities such as Tokyo ...

Urn – Formal Definition

- **C** set of unique target labels
- *E* set of unique error labels
- num(C) distribution of target labels
- num(E) distribution of error labels

Urn Example

distribution of target labels: $num(C) = \{2, 2, 1, 1, 1\}$

distribution of error labels: num(E) = {2, 1} Urn for **C** = **City**

Computing Probabilities

If an extraction x appears k times in a set of n distinct occurrences of the pattern, what is the probability that $x \in C$?

Computing Probabilities

Given that an extraction x appears k times in n draws from the urn (with replacement), what is the probability that $x \in C$?

$$P(x \in C | x \text{ appears } k \text{ times in } n \text{ draws}) = \frac{\sum_{r \in num(C)} \left(\frac{r}{s}\right)^k (1 - \frac{r}{s})^{n-k}}{\sum_{r' \in num(C \cup E)} \left(\frac{r'}{s}\right)^k (1 - \frac{r'}{s})^{n-k}}$$

where s is the total number of balls in the urn

URNS without labeled data

- Needed: num(C), num(E)
- Assumed to be Zipf

– Frequency of *i*th element $\propto i^{-z}$

• With assumptions, learn Zipfian parameters for any class *C* from unlabeled data alone

URNS without labeled data

Observed frequency distribution

Probabilities Assigned by URNS

C = Country			C = City		
<i>n</i> ∼50,000	k	PURNS	<i>n</i> ~50,000	k	PURNS
United States	3899	0.9999	New York	1488	0.9999
China	1999	0.9999	Chicago	999	0.9999
•••	•		•	• •	
OilWatch Africa	1	0.03	El Estor	1	0.63
Religion Paraguay	1	0.03	Nikki	1	0.63
Chicken Mole	1	0.03	Ragaz	1	0.63
Republics of Kenya	1	0.03	Villegas	1	0.63
Atlantic Ocean	1	0.03	Cres	1	0.63
New Zeland	1	0.03	Northeastwards	1	0.63

Probability Accuracy

Sensitivity Analysis

- URNS assumes num(E), p are constant
 - □ If we alter parameter choices substantially, URNS still outperforms noisy-or, PMI by at least 8x
- Most sensitive to p
 - p ~ 0.85 is relatively consistent across randomly selected classes from Wordnet
 (solvents, devices, thinkers, relaxants, mushrooms, mechanisms, resorts, flies, tones, machines, ...)

Multiple Extraction Patterns

Phrase	Hits
"Omaha and other cities"	950
"Illinois and other cities"	24,400
"cities such as Omaha "	930
"cities such as Illinois "	6

- Multiple urns
 - Target label frequencies correlated across urns
 - Error label frequencies can be uncorrelated

Benefits from Multiple Urns

	Precision at <i>K</i>				
K	Single M	ultiple			
10	1.0	1.0			
20	0.9875	1.0			
50	0.925	0.955			
100	0.8375	0.845			
200	0.7075	0.71			

Using multiple URNS reduces error by 29%.