

Weight(x) < 50lbs ^
Max_dim $(x)<20 f t{ }^{\wedge} . . . \wedge$
=>Throw(person, $x$ )

Weight(baseball) = 5oz ^.... =>
Throw(person, baseball)
"throwable objects such as"
Web Images Maps Shopping Books More - Search tools

About 5,050 results ( 0.19 seconds)
Patent US5984812 - Grippable surface for throwable object - Google ... www.google.com/patents/US5984812
This invention relates to a grippable surface for throwable objects such as a football, baseball, etc. which enhances the ease with which the object may be ...
[PDF] Name Juggle.pdf - GOAL Consulting
www.goalconsulting.org/page3/files/Name\ Juggle.pdf -
Materials: Many soft throwable objects such as fleece balls, wadded up pieces of paper, Nerf ${ }^{T M}$ balls. Level: Grades K and higher. Suggested Procedure. 1.

Cities such as X Y, mayor of $X$

- The Web makes hard AI problems easier
...but


## Understanding Language is Hard

Michael Bloomberg, mayor of New York City, was born in ...

Eric Johnson, CEO of Texas Instruments, mayor of Dallas from 1964-1971, and ...

## Redundancy enables Information Extraction

```
Michael Bloomberg, mayor of New
York City, was born in ...
```

```
Announced by Michael Bloomberg,
the mayor of New York City...
```

```
Michael Bloomberg, mayor of New
```

York City, stated that...
...+10,000s more

```
Eric Johnson, CEO Of Texas
Instruments, mayor of Dallas
from 1964-1971, and ...
```

(only once)


| Mayor | City | $p$ |
| :--- | :--- | :--- |
| Michael <br> Bloomberg | New York <br> City | 0.99 |
| Texas <br> Instruments | Dallas | 0.05 |

[Downey et al., AIJ 2010]

## Redundancy: Single Pattern

Consider a single pattern suggesting $C$, e.g.,

```
countries such as x
```

If an extraction $x$ appears $k$ times in a set of $n$ distinct occurrences of the pattern, what is the probability that $x \in C$ ?

## Redundancy: Single Pattern

$C=$ Country
$n=10$ occurrences
"...countries such as Saudi Arabia..."
"...countries such as the United States..."
"...countries such as Saudi Arabia..."
"...countries such as Japan..."
"...countries such as Africa..."
"...countries such as Japan..."
"...countries such as the United Kingdom..."
"...countries such as Iraq..."
"...countries such as Afghanistan..."
"...countries such as Australia..."

## Naïve Model: Noisy-Or

$C=$ Country

| $l$ | $k$ | $P_{\text {noisy-or }}$ |
| :--- | :--- | :--- |
| $n=10$ |  |  |
| Saudi Arabia | 2 | 0.99 |
| Japan | 2 | 0.99 |
| United States | $\mathbf{1}$ | 0.9 |
| Africa | $\mathbf{1}$ | 0.9 |
| United Kingdom | $\mathbf{1}$ | 0.9 |
| Iraq | $\mathbf{1}$ | 0.9 |
| Afghanistan | $\mathbf{1}$ | 0.9 |
| Australia | $\mathbf{1}$ | 0.9 |

[Agichtein \& Gravano, 2000; Lin et al. 2003]
$P_{\text {noisy-or }}(x \in C \mid x$ seen $k$ times $)$

$$
=1-(1-p)^{k}
$$

$p=$ probability pattern yields a correct extraction, i.e.,

$$
p=0.9
$$

Noisy-or ignores:
-Sample size ( $n$ )
-Distribution of $C$

## Needed in Model: Sample Size

| $\begin{aligned} & C=\text { Country } \\ & n=10 \end{aligned}$ | $k$ | $P_{\text {noisy-or }}$ | $\begin{aligned} & C=\text { Country } \\ & n \sim 50,000 \end{aligned}$ | $k$ | $P_{\text {noisy-or }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Saudi Arabia | 2 | 0.99 | United States | 3899 | 0.9999.. |
| Japan | 2 | 0.99 | China | 1999 | 0.9999 |
| United States | 1 | 0.9 |  |  |  |
| Africa | 1 | 0.9 | OilWatch Africa | 1 | 0.9 |
| United Kingdom | 1 | 0.9 | Religion Paraguay | 1 | 0.9 |
| Iraq | 1 | 0.9 | Chicken Mole | 1 | 0.9 |
| Afghanistan | 1 | 0.9 | Republics of Kenya | 1 | 0.9 |
| Australia | 1 | 0.9 | Atlantic Ocean | 1 | 0.9 |

## As sample size increases, noisy-or becomes inaccurate.

## Needed in Model: Distribution of $C$



## Needed in Model: Distribution of $C$

| $\begin{aligned} & C=\text { Country } \\ & n \sim 50,000 \end{aligned}$ | k | $P_{\text {freq }}$ | $\begin{aligned} & P_{\text {freq }}(x \in C\mid x \text { seen } k \text { times }) \\ &=1-(1-p)^{\alpha k / n}\end{aligned}$ |
| :---: | :---: | :---: | :---: |
| United States | 3899 | 0.9999... |  |
| China | 1999 | 0.9999... |  |
| OilWatch Africa | 1 | 0.05 |  |
| Religion Paraguay | 1 | 0.05 |  |
| Chicken Mole | 1 | 0.05 |  |
| Republics of Kenya | 1 | 0.05 |  |
| Atlantic Ocean | 1 | 0.05 |  |

## Needed in Model: Distribution of $C$



Probability $x \in C$ depends on the distribution of $C$.

## Solution: Urns Model

Urn for $C=$ City
...cities such as Tokyo...


## Urn - Formal Definition

$C$ - set of unique target labels
$E$ - set of unique error labels
num (C) - distribution of target labels
num(E) - distribution of error labels


## Urn Example

distribution of target labels:
$\operatorname{num}(C)=\{2,2,1,1,1\}$
distribution of error labels:
$\operatorname{num}(E)=\{2,1\}$

Urn for $C=$ City


## Computing Probabilities

If an extraction $x$ appears $k$ times in a set of $n$ distinct occurrences of the pattern, what is the probability that $x \in C$ ?

## Computing Probabilities

Given that an extraction $x$ appears $k$ times in $n$ draws from the urn (with replacement), what is the probability that $x \in C$ ?
$P(x \in C \mid x$ appears $k$ times in $n$ draws $)=$

$$
\frac{\sum_{r \in \operatorname{num}(C)}\left(\frac{r}{s}\right)^{k}\left(1-\frac{r}{s}\right)^{n-k}}{\sum_{r^{\prime} \in \operatorname{num}(C \cup E)}\left(\frac{r^{\prime}}{s}\right)^{k}\left(1-\frac{r^{\prime}}{s}\right)^{n-k}}
$$

where $s$ is the total number of balls in the urn

## URNS without labeled data

- Needed: num(C), num( $E$ )
- Assumed to be Zipf
- Frequency of ith element $\propto i^{-2}$
- With assumptions, learn Zipfian parameters for any class $C$ from unlabeled data alone


## URNS without labeled data



Observed frequency distribution

## Probabilities Assigned by URNs

| $C=$ Country |  |  | $C=$ City |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n \sim 50,000$ | $k$ | $P_{\text {URNS }}$ | $n \sim 50,000$ | $k$ | $P_{\text {URNS }}$ |
| United States | 3899 | 0.9999... | New York | 1488 | 0.9999... |
| China | 1999 | 0.9999... | Chicago | 999 | 0.9999... |
| OilWatch Africa | 1 | 0.03 | El Estor | 1 | 0.63 |
| Religion Paraguay | 1 | 0.03 | Nikki | 1 | 0.63 |
| Chicken Mole | 1 | 0.03 | Ragaz | 1 | 0.63 |
| Republics of Kenya | 1 | 0.03 | Villegas | 1 | 0.63 |
| Atlantic Ocean | 1 | 0.03 | Cres | 1 | 0.63 |
| New Zeland | 1 | 0.03 | Northeastwards | 1 | 0.63 |

## Probability Accuracy



Urns's probabilities are 15-22x closer to optimal.


## Sensitivity Analysis

- Urns assumes num(E), $p$ are constant
$\square$ If we alter parameter choices substantially, URNs still outperforms noisy-or, PMI by at least 8 x

Most sensitive to $p$
$\square p^{\sim} 0.85$ is relatively consistent across randomly selected classes from Wordnet (solvents, devices, thinkers, relaxants, mushrooms, mechanisms, resorts, flies, tones, machines, ...)

## Multiple Extraction Patterns

| Phrase | Hits |
| :--- | ---: |
| "Omaha and other cities" | 950 |
| "Illinois and other cities" | 24,400 |
| "cities such as Omaha" | 930 |
| "cities such as Illinois" | 6 |

- Multiple urns
- Target label frequencies correlated across urns
- Error label frequencies can be uncorrelated


## Benefits from Multiple Urns

Precision at $K$

| $K$ | Single | Multiple |  |
| :---: | ---: | ---: | :---: |
| 10 | 1.0 | $\mathbf{1 . 0}$ |  |
| 20 | 0.9875 | $\mathbf{1 . 0}$ |  |
| 50 | 0.925 | $\mathbf{0 . 9 5 5}$ |  |
| 100 | 0.8375 | $\mathbf{0 . 8 4 5}$ |  |
| 200 | 0.7075 | $\mathbf{0 . 7 1}$ |  |

Using multiple URNS reduces error by $29 \%$.

