Basics of Statistical Estimation

Doug Downey, Northwestern EECS 395/495, Fall 2014 (several illustrations from P. Domingos, University of Washington CSE)

Bayes' Rule

- $P(A \mid B)=P(B \mid A) P(A) / P(B)$
- Example: P (symptom| disease) $=0.95, \mathrm{P}$ (symptom $\mid \neg$ disease $)=0.05$ $P($ disease $=0.000 \mathrm{I})$

P (disease | symptom)

$$
\begin{aligned}
& =\frac{P(\text { symptom } \mid \text { disease })^{*} P(\text { disease })}{P(\text { symptom })} \\
& =\frac{0.95^{*} 0.0001}{0.95^{*} 0.0001+0.05^{*} 0.9999}=0.002
\end{aligned}
$$

Bayes' Rule

- $P(A \mid B)=P(B \mid A) P(A) / P(B)$
- Also:
- $P(A \mid B, C)=P(B \mid A, C) P(A \mid C) / P(B \mid C)$
- More generally:
- $P(\boldsymbol{A} \mid \boldsymbol{B})=P(\boldsymbol{B} \mid \boldsymbol{A}) P(\boldsymbol{A}) / P(\boldsymbol{B})$
- (Boldface indicates vectors of variables)

Bayes' Rule

- Why is Bayes' Rule so important?
- Often, we want to deduce P(Hidden state | Data)
- E.g., Hidden state = disease, Data = symptoms
- and the simplest way to express that is in terms of "causes" of the model: P(Data | Model)
- E.g., how common is a symptom, with or without a given disease
- times a prior belief about the model, \mathbf{P} (Model)
- E.g., probability of a disease

Terms for Bayes

- $\mathrm{P}($ Model \mid Data $)=\mathrm{P}($ Data \mid Model $) \mathrm{P}($ Model $) / \mathrm{P}($ Data $)$
- P(Model) : Prior
- P(Data | Model) : Likelihood
- P(Model | Data) : Posterior

Probabilistic Models

- Joint Distribution can answer queries
- P(symptoms, disease) can be used to predict whether person has disease based on symptoms
- But:
- Where do the probabilities come from (learning)?
- How do we represent a joint compactly using conditional independencies? (representation - graphical models)

Learning Probabilities:Classical Approach

Simplest case: Flipping a thumbtack

True probability θ is unknown

Given: flips generated independently with the same $\boldsymbol{\theta}$, (a.k.a. Independent and identically distributed data - iid), Estimate: $\boldsymbol{\theta}$

Estimating Probabilities

- Three Methods:
- Maximum Likelihood Estimation (ML)
- Bayesian Estimation
- Maximum A posteriori Estimation (MAP)

Maximum Likelihood Principle

Choose the parameters that maximize the probability of the observed data

Maximum Likelihood Estimation

$$
\begin{aligned}
& p(\text { heads } \mid \theta)=\boldsymbol{\theta} \\
& p(\text { tails } \mid \theta)=(1-\theta) \\
& p(\text { hhth...ttth } \mid \theta)=\theta^{\# h}(1-\theta)^{\# t}
\end{aligned}
$$

(Number of heads is binomial distribution)

Computing the ML Estimate

- Use log-likelihood
- Differentiate with respect to parameter(s)
- Equate to zero and solve
- Solution:

$$
\theta=\frac{\# h}{\# h+\# t}
$$

Sufficient Statistics

$$
p(h h t h \ldots t t t h \mid \theta)=\theta^{\# h}(1-\theta)^{\# t}
$$

(\#h,\#t) are sufficient statistics

Bayesian Estimation

True probability θ is unknown
Bayesian probability density for $\boldsymbol{\theta}$

Use of Bayes' Theorem

Example: Observation of "Heads"

prior
likelihood
posterior

Probability of Heads on Next Toss

$$
\begin{aligned}
p(n+1 \text { th toss is } h \mid \mathbf{d}) & =\int p\left(X_{N+1}=h \mid \theta\right) p(\theta \mid \mathbf{d}) d \theta \\
& =\int \theta p(\theta \mid \mathbf{d}) d \theta \\
& =E_{p(\theta \mid \mathbf{d})}(\theta)
\end{aligned}
$$

MAP Estimation

- Approximation:
- Instead of averaging over all parameter values
- Consider only the most probable value (i.e., value with highest posterior probability)
- Usually a very good approximation, and much simpler
- MAP value \neq Expected value
- MAP \rightarrow ML for infinite data
(as long as prior $\neq 0$ everywhere)

Prior Distributions for θ

- Direct assessment
- Parametric distributions
- Conjugate distributions (for convenience)

Conjugate Family of Distributions

Beta distribution:

$$
p(\theta)=\operatorname{Beta}\left(\alpha_{h}, \alpha_{t}\right) \propto \theta^{\alpha_{h}-1_{(1-\theta)} \alpha_{t}-1}
$$

$$
\alpha_{h}, \alpha_{t}>0
$$

Resulting posterior distribution:
$p(\theta \mid h$ heads,t tails $) \propto \theta^{\# h+\alpha_{h}-1}(1-\theta)^{\# t+\alpha_{t}-1}$

Estimates Compared

- Prior prediction:

$$
E(\theta)=\frac{\alpha_{h}}{\alpha_{h}+\alpha_{t}}
$$

- Bayesian posterior prediction

$$
E(\theta)=\frac{\# h+\alpha_{h}}{\# h+\alpha_{h}+\# t+\alpha_{t}}
$$

- MAP estimate:

$$
\begin{aligned}
\theta & =\frac{\# h+\alpha_{h}-1}{\# h+\alpha_{h}-1+\# t+\alpha_{t}-1} \\
\theta & =\frac{\# h}{\# h+\# t}
\end{aligned}
$$

Intuition

- The hyperparameters α_{h} and α_{t} can be thought of as imaginary counts from our prior experience, starting from "pure ignorance"
- Equivalent sample size $=\alpha_{h}+\alpha_{t}$
- ("equivalent" in terms of effect on Bayesian estimate)
- The larger the equivalent sample size, the more confident we are about the true probability

Beta Distributions

$\operatorname{Beta}(0.5,0.5)$

Beta(1, 1)

Beta $(3,2)$

Beta $(19,39)$

Assessment of a Beta Distribution

Method 1: Equivalent sample

- assess α_{h} and α_{t}
- assess $\alpha_{h}+\alpha_{t}$ and $\alpha_{h} /\left(\alpha_{h}+\alpha_{t}\right)$

Method 2: Imagined future samples

$p($ heads $)=0.2$ and $p($ heads $\mid 3$ heads $)=0.5 \Rightarrow \alpha_{h}=1, \alpha_{t}=4$

$$
\text { check: } 0.2=\frac{1}{1+4}, \quad 0.5=\frac{1+3}{1+3+4}
$$

Generalization to m Outcomes

 (Multinomial Distribution)
Dirichlet distribution:

$$
\begin{gathered}
p\left(\theta_{1}, \ldots, \theta_{m}\right)=\operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{m}\right) \propto \prod_{i=1}^{m} \theta_{i}^{\alpha_{i}-1} \\
\sum_{i=1}^{m} \theta_{i}=1 \quad \alpha_{i}>0
\end{gathered}
$$

Properties:

$$
\begin{gathered}
E\left(\theta_{i}\right)=\frac{\alpha_{i}}{\sum_{i=1}^{m} \alpha_{i}} \\
p\left(\theta \mid N_{1}, \ldots, N_{m}\right) \propto \prod_{i=1}^{m} \theta_{i}^{\alpha_{i}+N_{i}-1}
\end{gathered}
$$

Other Distributions

Likelihoods from the exponential family

- Binomial
- Multinomial
- Poisson
- Gamma
- Normal

Learning a Real-Valued Function

Consider any real-valued target function f
Training examples $\left\langle x_{i}, d_{i}\right\rangle$, where d_{i} is noisy training value

- $d_{i}=f\left(x_{i}\right)+e_{i}$
- e_{i} is random variable (noise) drawn independently for each x_{i} according to some Gaussian distribution with mean $=0$

Then the maximum likelihood hypothesis $h_{M L}$ is the one that minimizes the sum of squared errors:

$$
h_{M L}=\arg \min _{h \in H} \sum_{i=1}^{m}\left(d_{i}-h\left(x_{i}\right)\right)^{2}
$$

Maximum likelihood hypothesis:

$$
\begin{aligned}
h_{M L} & =\underset{h \in H}{\operatorname{argmax}} p(D \mid h)=\underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} p\left(d_{i} \mid h\right) \\
& =\underset{h \in H}{\operatorname{argmax}} \prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{d_{i}-h\left(x_{i}\right)}{\sigma}\right)^{2}}
\end{aligned}
$$

Maximize natural log of this instead ...

$$
\begin{aligned}
h_{M L} & =\underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2 \pi \sigma^{2}}}-\frac{1}{2}\left(\frac{d_{i}-h\left(x_{i}\right)}{\sigma}\right)^{2} \\
& =\underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m}-\frac{1}{2}\left(\frac{d_{i}-h\left(x_{i}\right)}{\sigma}\right)^{2} \\
& =\underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m}-\left(d_{i}-h\left(x_{i}\right)\right)^{2} \\
& =\underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m}\left(d_{i}-h\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

