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Bayes’ Rule

» P(A| B) =P(B|A) P(A) / P(B)

» Example:
P(symptom| disease) = 0.95, P(symptom| —disease) = 0.05
P(disease = 0.0001)

P(disease | symptom)
= P(symptom | disease)*P(disease)
P(symptom)

= 0.95*0.0001 = 0.002
0.95*0.0001+0.05*0.9999




Bayes’ Rule

» PA| B)=P(B|A) P(A) / P(B)
» Also:
PAA|B,C)=PB|ACPA|C)/PB]|C)

» More generally:
P(A|B) =P(B| A) P(A) / P(B)
(Boldface indicates vectors of variables)



Bayes’ Rule

» Why is Bayes’ Rule so important?
Often, we want to deduce P(Hidden state | Data)
E.g., Hidden state = disease, Data = symptoms

and the simplest way to express that is in terms of “causes” of
the model: P(Data | Model)

E.g., how common is a symptom, with or without a given disease

times a prior belief about the model, P(Model)
E.g., probability of a disease



Terms for Bayes

» P(Model | Data) = P(Data | Model) P(Model) / P(Data)
» P(Model) : Prior

» P(Data | Model) : Likelihood

» P(Model | Data) : Posterior



Probabilistic Models

* Joint Distribution can answer queries

* P(symptoms, disease) can be used to predict whether
person has disease based on symptoms

* But:
* Where do the probabilities come from (learning)?

* How do we represent a joint compactly using conditional
independencies! (representation — graphical models)



Learning Probabilities:Classical Approach

Simplest case: Flipping a thumbtack

heads tails

& J/ True probability @ is unknown

Given: flips generated independently with the same 6,
(a.k.a. Independent and identically distributed data - iid),
Estimate: 8




Estimating Probabilities
» Three Methods:

Maximum Likelihood Estimation (ML)
Bayesian Estimation
Maximum A posteriori Estimation (MAP)



Maximum Likelihood Principle

Choose the parameters that maximize
the probability of the observed data




Maximum Likelihood Estimation
p(heads |0) = &
p(tails |0)= (1-86)
p(hhth..ttth|0)=0""(@1-0)"

(Number of heads is binomial distribution)



Computing the ML Estimate

» Use log-likelihood
» Differentiate with respect to parameter(s)
» Equate to zero and solve

» Solution:

B #h
#h + #t

0



Sufficient Statistics

p(hhth...ttth | 0) = 0" (@ - 9)™

(#h,#t) are sufficient statistics



Bayesian Estimation

heads tails

AL

True probability @ is unknown

Bayesian probability density for o)

p(®)

Y



Use of Bayes’ Theorem

prior jikelihood

posterior f

o |Eads)  p(o)p(heads | 0)
j n(0") p(heads | ") d&’

o« p(@)p(heads | &)



Example: Observation of “Heads"

p(6) p(heads|6)= & p(éheads)

X oC

0 ié’o ibo 16’

prior likelihood posterior



Probability of Heads on Next Toss

p(n +1thtossish |d) = [p(X, ., =h|8)p@]|d)deo

= (o p©|d) deo
= EBy00)(0)



MAP Estimation

» Approximation:
Instead of averaging over all parameter values

Consider only the most probable value
(i.e., value with highest posterior probability)

» Usually a very good approximation,
and much simpler

» MAP value # Expected value

» MAP — ML for infinite data
(as long as prior # 0 everywhere)



Prior Distributions for 0

» Direct assessment

» Parametric distributions

Conjugate distributions
(for convenience)



Conjugate Family of Distributions

Beta distribution:

p(0) = Beta(a,. @) = 6% Ta- o) 1
a o, >0
Resulting posterior distribution:
#h+a, -1 #t+a, -1

p(6 | h heads,t tails) o« & (1-6)



Estimates Compared

» Prior prediction: E(9) = )
a, + «a,
» Bayesian posterior E(0) = #h+a,
prediction #h+a +#t+0a,
#h -1
» MAP estimate: 0 = T %
#th+oa —-1+#t+a, -1

» ML estimate: 0 — #h

_#h+#t



Intuition

» The hyperparameters o, and o, can be thought of as
imaginary counts from our prior experience, starting
from "pure ignorance”

» Equivalent sample size = o, + o,

(“equivalent” in terms of effect on Bayesian estimate)

» The larger the equivalent sample size, the more confident
we are about the true probability



Beta Distributions

_J




Assessment of a Beta Distribution

Method 1: Equivalent sample
- assess ay, and o
- assess a,,ta, and o /(o,+a,)

Method 2: Imagined future samples

p(heads) = 0.2and p(heads | 3heads) = 0.5 = «,

1 1+3
check: 0.2 =—, 0.5=
1+4 1+3+4




Generalization to m Outcomes
(Multinomial Distribution)

Dirichlet distribution:

p(0,,...,0,,) = Dirichlet( «,,...,a_ ) oc | ] 0.% —1
=1

m

Properties:



Other Distributions

Likelihoods from the exponential family
» Binomial

» Multinomial

» Poisson

» Gamma

» Normal



Learning a Real-Valued Function

A

y




Consider any real-valued target function f
Training examples (x;, d;), where d; is noisy training value
o d; = f(z:) + e

e ¢; is random variable (noise) drawn independently for
each z; according to some Gaussian distribution with
mean=0

Then the maximum likelihood hypothesis hjps7, is the one
that minimizes the sum of squared errors:

hasz, = arg min > " (di — h(z:))’
=1



Maximum likelihood hypothesis:

argmax p(D|h) = argmaXHp(d |h)
heH heH

harr

d; —h(z;
e %( a( ))2

= argmax
§EH H\/27ra

=1



Maximize natural log of this instead ...

1 1
hyro = argmalen — —




