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Bayes’ Rule 

 P(A | B) = P(B | A) P(A) / P(B) 

 Example: 
P(symptom| disease) = 0.95, P(symptom| disease) = 0.05 

P(disease = 0.0001) 

 

 
P(disease | symptom)  

 = P(symptom | disease)*P(disease) 

   P(symptom) 

 

 =  0.95*0.0001  =   0.002 

    0.95*0.0001+0.05*0.9999 



Bayes’ Rule 

 P(A | B) = P(B | A) P(A) / P(B) 

 Also: 

 P(A | B, C) = P(B | A, C) P(A | C) / P(B | C) 

 

 More generally: 

 P(A | B) = P(B | A) P(A) / P(B) 

 (Boldface indicates vectors of variables) 

 

 



Bayes’ Rule 

 

 Why is Bayes’ Rule so important? 

 Often, we want to deduce P(Hidden state | Data) 

 E.g., Hidden state = disease, Data = symptoms 

 and the simplest way to express that is in terms of “causes” of 

the model: P(Data | Model)   

 E.g., how common is a symptom, with or without a given disease 

 times a prior belief about the model, P(Model) 

 E.g., probability of a disease  

 



Terms for Bayes 

 

 P(Model | Data) = P(Data | Model) P(Model) / P(Data) 

 P(Model) : Prior  

 P(Data | Model) : Likelihood 

 P(Model | Data) : Posterior 

 



Probabilistic Models 

• Joint Distribution can answer queries 

• P(symptoms, disease) can be used to predict whether 

person has disease based on symptoms 

 

• But: 

• Where do the probabilities come from (learning)? 

• How do we represent a joint compactly using conditional 

independencies? (representation – graphical models) 



Learning Probabilities:Classical Approach 

Simplest case: Flipping a thumbtack 

tails heads 

True probability q  is unknown 

Given: flips generated independently with the same q,  
(a.k.a. Independent and identically distributed data - iid), 

Estimate: q 



Estimating Probabilities 

 Three Methods: 

 Maximum Likelihood Estimation (ML) 

 Bayesian Estimation 

 Maximum A posteriori Estimation (MAP) 



Maximum Likelihood Principle 

Choose the parameters that maximize 

the probability of the observed data 



Maximum Likelihood Estimation 

)|tails( qp

)|head s( qp q

)1( q

th
t t thhh thp

##
)1()|...( qqq 

(Number of heads is binomial distribution) 



Computing the ML Estimate 

 Use log-likelihood 

 Differentiate with respect to parameter(s) 

 Equate to zero and solve 

 Solution:  
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Sufficient Statistics 
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(#h,#t) are sufficient statistics 



Bayesian Estimation 

tails heads 

True probability q  is unknown 

 

Bayesian probability density for q  

 

 p(q) 

q 0 1 



Use of Bayes’ Theorem 
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Example: Observation of “Heads" 

p(q|heads) 

q 0 1 

p(q) 

q 0 1 

p(heads|q)= q 

q 0 1 



prior likelihood posterior 



Probability of Heads on Next Toss 
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MAP Estimation 

 Approximation: 

 Instead of averaging over all parameter values 

 Consider only the most probable value 

(i.e., value with highest posterior probability) 

 Usually a very good approximation, 

and much simpler 

 MAP value ≠ Expected value 

 MAP → ML for infinite data 

(as long as prior ≠ 0 everywhere) 



Prior Distributions for q 
 

 Direct assessment 

 Parametric distributions 

 Conjugate distributions 

(for convenience) 



Conjugate Family of Distributions 
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Estimates Compared 

 Prior prediction: 

 

 Bayesian posterior 

prediction 

 

 MAP estimate: 

 

 ML estimate: 
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Intuition 

 The hyperparameters h and t can be thought of as 

imaginary counts from our prior experience, starting 

from "pure ignorance" 

 Equivalent sample size = h + t 

 (“equivalent” in terms of effect on Bayesian estimate) 

 The larger the equivalent sample size, the more confident 

we are about the true probability 



Beta Distributions 

Beta(3, 2 ) Beta(1, 1 ) Beta(19, 39 ) Beta(0.5, 0.5 ) 



Assessment of a Beta Distribution  

Method 1: Equivalent sample 

  - assess h and t 

  - assess h+t and h/(h+t) 

 

Method 2: Imagined future samples 
 

4,15.0)heads 3|heads( and 2.0)heads( 
th

pp 

check :  . 2 =
1

1 + 4
0 0 5

1 3

1 3 4
, . 



 



Generalization to m Outcomes 

(Multinomial Distribution) 
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Other Distributions 

Likelihoods from the exponential family 

 Binomial 

 Multinomial 

 Poisson 

 Gamma 

 Normal 










