Semi-supervised Learning

EECS 395/495 Probabilistic Graphical Models Fall 2014

Semi-supervised Learning

- Unlabeled data abounds in the world
 - Web, measurements, etc.
- Labeled data is expensive
 - Image classification, natural language processing, speech recognition, etc. all require large #s of labels
- Idea: use unlabeled data to help with learning

Supervised Learning

3

Learn function from $\mathbf{x} = (x_1, ..., x_d)$ to $y \in \{0, 1\}$ given labeled examples (\mathbf{x}, y)

 Graphical Model describes how data (x, y) is generated

Missing Data: y

So use EM

Example: Document classification with Naïve Bayes

$$P(x_i|\theta) = \sum_{j \in [M]} P(c_j|\theta) P(x_i|c_j;\theta).$$

- x_i = count of word *i* in document
- c_i = document class (sports, politics, etc.)
- x_{it} = count of word *i* in docs of class *t*

$$P(x_i|\theta) \propto P(|x_i|) \sum_{j \in [M]} P(c_j|\theta) \prod_{w_t \in \mathcal{X}} P(w_t|c_j;\theta)^{x_{it}}$$

• M classes, $W = |\mathcal{X}|$ words

(from Semi-supervised Text Classification Using EM, Nigam, et al.)

Semi-supervised Training

- Initialize θ ignoring missing data
- E-step:
 - E[x_{it}] = count of word *i* in docs of class *t* in training set
 + E₀[count of word *i* in docs of class *t* in unlabeled data]
 - $E[\#c_t] = \text{count of docs in class t in training} + E_{\theta}[\text{count of docs of class } t \text{ in unlabeled data}]$
- M-step:
 - Set θ according to expected statistics above, I.e.:
 - $\mathsf{P}_{\theta} (w_t \mid c_t) = (E[x_{it}] + \mathsf{I}) / (\mathsf{W} + \Sigma_i E[x_{it}])$
 - ▶ $P_{\theta}(c_t) = (E[\#c_t] + I) / (\#tokens + M)$

D

When does semi-supervised learning work?

• When a better model of $P(\mathbf{x}) =>$ better model of $P(\mathbf{y} \mid \mathbf{x})$

Can't use purely discriminative models

Accurate modeling assumptions are key

Consider: negative class

Good example

Issue: negative class

Negative

NB*, EM* represent the negative class with the optimal number of model classes (c_i's)

Category	NB1	EM1	NB*	EM*
acq	86.9	81.3	88.0 (4)	93.1 (10)
com	94.6	93.2	96.0 (10)	97.2 (40)
crude	94.3	94.9	95.7 (13)	96.3 (10)
earn	94.9	95.2	95.9 (5)	95.7 (10)
grain	94.1	93.6	96.2 (3)	96.9 (20)
interest	91.8	87.6	95.3 (5)	95.8 (10)
money-fx	93.0	90.4	94.1 (5)	95.0 (15)
ship	94.9	94.1	96.3 (3)	95.9 (3)
trade	91.8	90.2	94.3 (5)	95.0 (20)
wheat	94.0	94.5	96.2 (4)	97.8 (40)

Problem: local maxima

"Deterministic Annealing"

$$\begin{split} l(\theta|X,Y) &= \sum_{x_i \in X_u} \log \sum_{c_j \in [M]} [\mathbf{P}(c_j|\theta) \mathbf{P}(x_i|c_j;\theta)]^{\beta} \\ &+ \sum_{x_i \in X_l} \log([\mathbf{P}(y_i = c_j|\theta) \mathbf{P}(x_i|y_i = c_j;\theta)]^{\beta}) \end{split}$$

- Slowly increase β
- Results: works, but can end up confusing classes (next slide)

Annealing performance

Homework #4 (1 of 3)

- What if we don't know the target classes in advance?
- Example: Set Expansion
- Wait until query time to run EM? Slow.
- Strategy: Learn a model in advance, obtain mapping from examples => "classes"
- Then at "query time" compare examples

Homework #4 (2 of 3)

- Classify noun phrases based on context in text
 - E.g. ____ prime minister CEO of ____
- Model noun phrases (NPs) as P(z | w):

$$P(z \mid Canada) = \begin{array}{c|c} z=1 & 2 & N \\ \hline 0.14 & 0.01 & \dots & 0.06 \end{array}$$

- Experiment with N=4
- Query time
 - Input: "seeds" (e.g., Algeria, UK)
 - **Output**: ranked list of other NPs, using KL div.

Homework #4 (3 of 3)

- Code: written in Java
- You write ~4 lines
 - (important ones)
- Run some experiments

Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks
- Inference
- Learning
 - Parameters, Structure, EM
- HMMs