Naïve Bayes Classifiers

Naïve Bayes Classifiers

- Combines all ideas we've covered
- Conditional Independence
- Bayes' Rule
- Statistical Estimation
- Bayes Nets
- ...in a simple, yet accurate classifier
- Classifier: Function $f(x)$ from $X=\left\{\left\langle x_{1}, \ldots, x_{d}\right\rangle\right\}$ to Class
- E.g., $\boldsymbol{X}=\{<$ GRE, GPA, Letters $>\}$, Class $=\{y \mathrm{y}$ s, no, wait $\}$

Probability => Classification (1 of 2)

- Classification task
- Learn function $f(\boldsymbol{x})$ from $\left.\boldsymbol{X}=\left\{<x_{1}, \ldots, x_{d}\right\rangle\right\}$ to Class
- Given: Examples $D=\{(\boldsymbol{x}, \boldsymbol{y})\}$
- Probabilistic Approach
- Learn $\mathrm{P}($ Class $=y \mid X=x)$ from D
- Given \boldsymbol{x}, pick the maximally probable y

Probability => Classification (2 of 2)

More formally

- $\mathrm{f}(\boldsymbol{x})=\arg \max _{\boldsymbol{y}} \mathrm{P}\left(\right.$ Class $\left.=\boldsymbol{y} \mid \boldsymbol{X}=\boldsymbol{x}, \boldsymbol{\theta}_{\text {MAP }}\right)$
- $\theta_{\text {MAP }}$: MAP parameters, learned from data
- That is, parameters of $\mathrm{P}($ Class $=\boldsymbol{y} \mid \boldsymbol{X = x})$
...we'll focus on using MAP estimate, but can also use ML or Bayesian
- Predict next coin flip? Instance of this problem
- $X=$ null
- Given $D=$ hhht...tht, estimate $P(\theta \mid D)$, find MAP
- Predict Class = heads iff $\theta_{\text {MAP }}>1 / 2$

Example: Text Classification

Dear Sir/Madam,
We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23I33 with serial Number: EL-I23542, batch number: 8/I63/EL-35, lottery Ref number: EL-93 I8 and drew lucky numbers 7-I-8-36-4-22 which consequently won in the Ist category, you have therefore been approved for a lump sum pay out of US\$I,500,000.00 (One Million, Five Hundred Thousand United States dollars)

Representation

- $X=$ document
- Task: Estimate $\mathrm{P}($ Class $=\{$ spam, non-spam $\} \mid X)$
- Question: how to represent X?
- Lots of possibilities, common choice:"bag of words"

> Dear Sir/Madam,
> We are pleased to inform you of the result of the Lottery Winners International programs held on the $30 / 8 / 2004$. Your e-mail address attached to ticket number: EL-23I33 with serial Number: ELI23542, batch number: $8 / 163 / E L-35$, lottery Ref number: EL- 93 I8 and drew lucky numbers $7-1-8-36-4-22$ which consequently won in the I st category, you have therefore been approved for a lump sum pay out of US $\$ 1,500,000.00$ (One Million, Five Hundred Thousand United States dollars)

Sir	1
Lottery	10
Dollars	7
With	38

Bag of Words

- Ignores Word Order, i.e.
- No emphasis on title
- No compositional meaning ("ColdWar" -> "cold" and "war")
- Etc.
- But, massively reduces dimensionality/complexity
- Still and all...
- Presence or absence of a 100,000-word vocab => $2^{\wedge} 100,000$ distinct vectors

Naïve Bayes Classifiers

- $P($ Class $\mid X)$ for $|\operatorname{Val}(X)|=2^{\wedge} 100,000$ requires
$2^{\wedge} 100,000$ parameters
- Problematic.
- Bayes' Rule:

$$
P(\text { Class } \mid \boldsymbol{X})=P(\boldsymbol{X} \mid \text { Class }) P(\text { Class }) / P(\boldsymbol{X})
$$

- Assume presence of word i is independent of all other words given Class:

$$
P(\text { Class } \mid X)=\Pi_{i} \mathrm{P}\left(X_{i} \mid \text { Class }\right) P(\text { Class }) / P(X)
$$

- Now only 200,00I parameters for $P($ Class | X)

Naïve Bayes Assumption

- Features are conditionally independent given class
- Not P("Republican","Democrat") = P("Republican")P("Democrat") but instead P("Republican","Democrat" | Class = Politics) = P("Republican" | Class = Politics)P("Democrat" | Class = Politics)
- Still, an absurd assumption
" ("Lottery" \perp "Winner" \mid SPAM)? ("lunch" \perp "noon" | Not SPAM)?
- But: offers massive tractability advantages and works quite well in practice
, Lesson: Overly strong independence assumptions sometimes allow you to build an accurate model where you otherwise couldn't

Getting the parameters from data

- Parameters $\boldsymbol{\theta}=<\theta_{i j}=\mathrm{P}\left(w_{i} \mid\right.$ Class $\left.=j\right)>$
- Maximum Likelihood: Estimate $P\left(w_{i} \mid\right.$ Class $\left.=j\right)$ from D by counting
- Fraction of documents in class j containing word i
- But if word i never occurs in class j ?
- Commonly used MAP estimate:
- (\# docs in class j with word i) + I
(\# docs in class j) $+|V|$

Caveats

- Naïve Bayes effective as a classifier
- Not as effective in producing probability estimates
> $\Pi_{i} \mathrm{P}\left(w_{i} \mid\right.$ Class) pushes estimates toward 0 or I
- In practice, numerical underflow is typical at classification time
- Compare sum of logs instead of product

