Inference in Markov Networks

Doug Downey

Northwestern EECS 395/495 Fall 2014

Markov Network Inference

- $P(\boldsymbol{x})=\frac{\Pi_{c} \phi_{c}\left(\boldsymbol{x}_{c}\right)}{Z}$

$$
\mathrm{Z}=\Sigma_{\boldsymbol{x}} \Pi_{c} \phi_{c}\left(\boldsymbol{x}_{c}\right)
$$

Grades	TV	$\phi_{1}(\mathrm{G}, \mathrm{TV})$	Trivia Knowledge	$\phi_{2}(\mathrm{TV}, \mathrm{K})$
bad	none	2.0		
good	none	3.0	weak	2.0
bad	lots	3.0	weak	1.0
good	lots	1.0	strong	1.5
			strong	3.0

Markov Network Inference

- P(Grades | TV=none)? Straightforward: enumerate, then re-normalize

But...

- P(Grades)? Tougher.

- Need to compute Z, requires summing over Trivia Knowledge as well. Compare with Bayes Net:

Inference in Markov Networks

- In general, we need to sum over the whole network
- A method for doing so is the junction-tree algorithm
- As a side effect, it computes all the marginals
- P(Grades), P(TV), P(Trivia Knowledge)
- Key: can also compute these given evidence
- We often want to do this for Bayes Nets too
- Suggests a strategy: convert to Markov Network, then run junction tree algorithm

Junction Tree Algorithm

- High-level Intuition: Computing marginals is straightforward in a tree structure
- Consider a directed Bayes Net for example:

Junction Tree

- Inference of marginals is straightforward in a tree
- Even if undirected, as we'll see
- Basic idea:
- If Bayes Net, convert to Markov Net
- Convert Markov Net into a tree structure
- How?

Triangulate, Build Clique Graph, Build Junction Tree

- Do Inference on Junction Tree

Convert to Markov Net

- Consider this Bayes Net conversion:

- What are the factors of the Markov Net?

Junction Tree Outline

- If Bayes Net, convert to Markov Net
- Convert Markov Net into Junction Tree
- Triangulate
- Build Clique Graph
- Build Junction Tree
- Do Inference using Junction Tree

Convert Markov Net into Junction Tree

- Punchline:

- Details follow

Junction Tree Outline

- If Bayes Net, convert to Markov Net
- Convert Markov Net into Junction Tree
- Triangulate
- Build Clique Graph
- Build Junction Tree
- Do Inference using Junction Tree

Triangulation => "Chordal" Graph

- Goal: Every cycle of length > 3 has a chord

- Why? Stay tuned.

Triangulation Algorithm

Repeat while there exists a cycle of length >3 with no chord: Add a chord (edge between two non-adjacent vertices in such a cycle).

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (1 of 3)

 It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (2 of 3)

Input: Graph G with n nodes
Output: "Is G triangulated?"
Algorithm:
Choose any node, label it 1
for $i=2$ to n
Find node with most labeled neighbors, label it i
if i has two non-adjacent labeled neighbors return false return true

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

No edge between nodes 5 and 6 , both of which are parents of 7 .

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Connect the two offending nodes

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Repeat Until Triangulation Check Succeeds

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Outline

- If Bayes Net, convert to Markov Net
- Convert Markov Net into Junction Tree
- Triangulate
- Build Clique Graph
- Build Junction Tree
- Do Inference using Junction Tree

Building Clique Graph H

- Create a node in H for each maximal clique in G
- Create edges in H between adjacent cliques in G
- Convenience: Label edges in H with nodes' intersection

H

Bigger Example

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Bigger Example - Clique Graph

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Outline

- If Bayes Net, convert to Markov Net
- Convert Markov Net into Junction Tree
- Triangulate
- Build Clique Graph
- Build Junction Tree
- Do Inference using Junction Tree

Build Junction Tree

- A Junction Tree is a subgraph of the clique graph that
- Is a tree
- Contains all the nodes of the clique graph
- Satisfies the junction tree property
- For each pair of cliques U, V with intersection S, all cliques on path between U and V contain S

Junction Tree Example

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Choose a Root

Remember This?

- Goal: Every cycle of length > 3 has a chord

Can we always find a Junction Tree?

- Yes, for clique graphs of triangulated graphs
- Define "edge weight" on the clique graph to be the size of the intersection
- Then a maximum-weight spanning tree is a junction tree
[Jensen \& Jensen, 1994]

Junction Tree

- If Bayes Net, convert to Markov Net
- Convert Markov Net into Tree
- Triangulate
- Build Clique Graph
- Build Junction Tree
- Do Inference on Tree

Inference

- Initialize clique nodes
- Clique node in H is a table assigning values to its variable combinations
- Put each potential function (or CPT) in G into exactly one node in H
- Combine by multiplying "pointwise" (as in variable elimination)

Example

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree with CPTs

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Algorithm

- Incorporate Evidence -- For each $E=e$
- Find one junction tree node containing E
- Zero out all cells with $E \neq e$
- Upward Pass (from leaves to root)
- Each leaf sends message to parent
- Message = leaf's table after summing out variables not in parent
- Parent propagates message
- Multiplies in the child's message, then repeats process

Junction Tree Algorithm

- Downward Pass
- Root sends child a message
- Divides its table by child's message from upward pass
- Sums out variables not in child, and sends
- Child propagates the message
- After multiplying in parent's message, child's table is the joint distribution over its variables
- Child continues the process (acts as root)

Upward Pass - assume no evidence

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Status After Upward Pass

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Downward Pass

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Status After Downward Pass

- From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Remember Junction Tree Property

- A Junction Tree is a subgraph of the clique graph that
- Is a tree
- Containsall the nodes of the clique graph
- Satisfies the junction tree property
- For each pair of cliques U, V with intersection S, all cliques on path between U and V contain S

Why a Tree?

- Consider the alternative - cycles:

- Previous algorithm not applicable -- can't define upward, downward pass

Finishing touches

- We have joint distributions
$-P(A, B, C), P(C, D, E)$, etc.
- Compute marginals by summing out
- Key: These sums are over small \#s of variables
- If evidence changes, we repeat forwardbackward pass
- BUT we don't have to re-compute the junction tree (= savings)

