EECS 395/495: Probabilistic Graphical Models

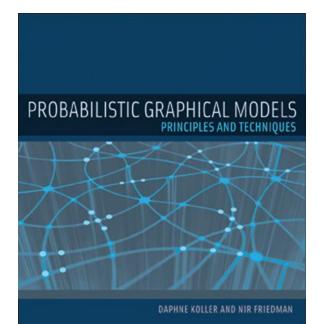
Fall 2014

Introductions

• Professor: Doug Downey

- Course web site:
 - www.cs.northwestern.edu/~ddowney/courses/395_Fall2014/
 - (linked off prof. home page)

Logistics


Grading

- Homework (50%)
 - Handed out in weeks 1, 2, 4, 6
 - Exercises and programming
- Midterm (25%)
 - Nov 6th in class
 - A lot like the homework
- Class project (25%)
 - Class works together on a statistical language modeling program

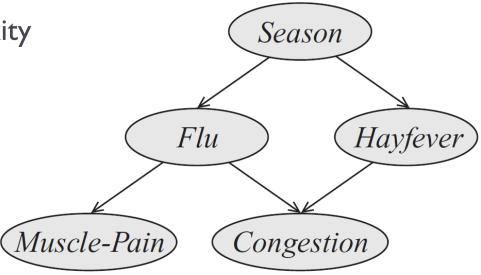
Textbook

 D. Koller & N. Friedman, Probabilistic Graphical Models: Principles and Techniques MIT Press, 2009.

Motivation

Artificial Intelligence

- tremendous success in domains without a lot of uncertainty (e.g. chess)
- But in the real world, uncertainty reigns
- We are awash in data
 - A crisis and an opportunity
- How can we deal with uncertainty? And how can we exploit massive bodies of data?


What the course is about

Probabilistic Models

 Deal with uncertainty: assign degree of confidence that different events will occur

Probabilistic Graphical Models

- Graph-based representation
- Compactly encode complexity

Goals

Learn how to:

- Build probabilistic models from data
- Use the models to do work
- Recognize opportunities for using models

Compared to Other Courses (1 of 2)

EECS 349 vs. this class

- EECS 349 is a prerequisite for this class
- EECS 349 focuses on learning functions, we learn distributions
- EECS 349 more algorithmic, this class more mathematical

Compared to Other Courses (2 of 2)

Statistics vs. this class

- A few variables vs. tens of thousands
- Continuous vs. discrete variables
- Our focus: computational issues and applications
 - How can we scale to huge, multivariate data sets?
 - When and where are graphical models useful?

Applications

- Almost anything!
- ► E.g.,
 - Computational Biology
 - Robotics
 - Vision
 - Human-Computer Interaction
 - Networks and Systems
 - Information Retrieval/Web Search
 - Etc., etc.

Topics

- Basics of Probability and Statistical Estimation (briefly)
- Representing Probability Distributions as Graphs
 - Directed ("Bayes Nets") and Undirected ("Markov Nets")
- Working with Probabilistic Graphical Models
 - Inference: making predictions with a model
 - **Learning**: acquiring models from data
- Sequential Models (Hidden Markov Models), Statistical Language Models, Active Learning, ...