Bayes Net Learning

EECS 395/495 Fall 2014

Homework Remaining

- Homework #3 assigned
- Homework #4 will be about semi-supervised learning and expectation-maximization
- …Homeworks #3-#4: the "how" of Graphical Models
- Then project (more on this soon)

Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks
- Inference
- Learning
 - Parameters, Structure, EM
- Semi-supervised Learning, HMMs

Today: Learning

General Rules of Thumb in Learning

Learning in Graphical Models

Parameters in Bayes Nets

What is Learning?

Given:

- target domain (set of random variables)
 - E.g., disease diagnosis: symptoms, test results, diseases
- Expert knowledge
 - MD's opinion on which diseases cause which symptoms
- Training examples from the domain
 - Existing patient records
- Build a model that predicts future examples
 - Use expert knowledge & data to learn PGM structure and parameters

General Rules of Thumb in Learning

The more training examples, the better

The more (~correct) assumptions, the better

- Model structure (e.g., edges in Bayes Net)
- Feature selection
 - Fewer irrelevant params => better

Optimizing on Training Set

Cross-validation

- Partition data into k pieces (a.k.a. "folds")
- For each piece *p*
 - train on all pieces but p, test on p
 - Average the results
- Homework 3: 10-fold CV on training set
 - How well will this predict test set performance?

Today: Learning

General Rules of Thumb in Learning

Learning in Graphical Models

- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs.Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Learning in Graphical Models

Problem Dimensions

- Model
 - Bayes Nets
 - Markov Nets

Structure

- Known
- Unknown (structure learning)
- Data
 - Complete
 - Incomplete (missing values or hidden variables)

Learning in Graphical Models

Problem Dimensions (today)

- Model
 - Bayes Nets
 - Markov Nets

Structure

- Known
- Unknown (structure learning)
- Data
 - Complete
 - Incomplete (missing values or hidden variables)

Learning in Bayes Nets – the upshot

Just statistical estimation for each CPT

Training Data	
Α	B
I I	I
I	0
I	0
0	I
I	I
0	I
I	I

$$(A) \rightarrow (B)$$

 $P_{ML}(A) = 0.714$ $P_{ML}(B | A=1) = 0.6$

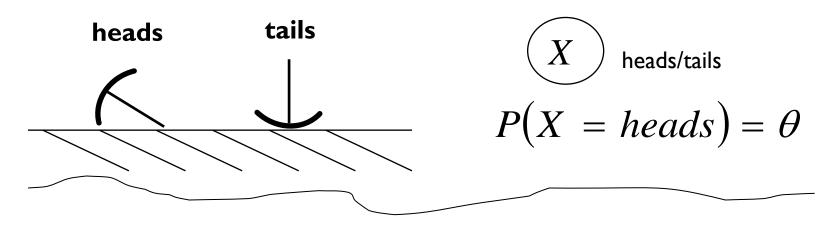
Learning in Bayes Nets – details

Problem statement (for today):

- Given a Bayes Network structure G, and a set of complete training examples {X_i}
- Learn the CPTs for G.
- Assumption (as before in stat. estimation): Training examples are independent and identically distributed (i.i.d.) from an underlying distribution P*
- Why just statistical estimation for each CPT?

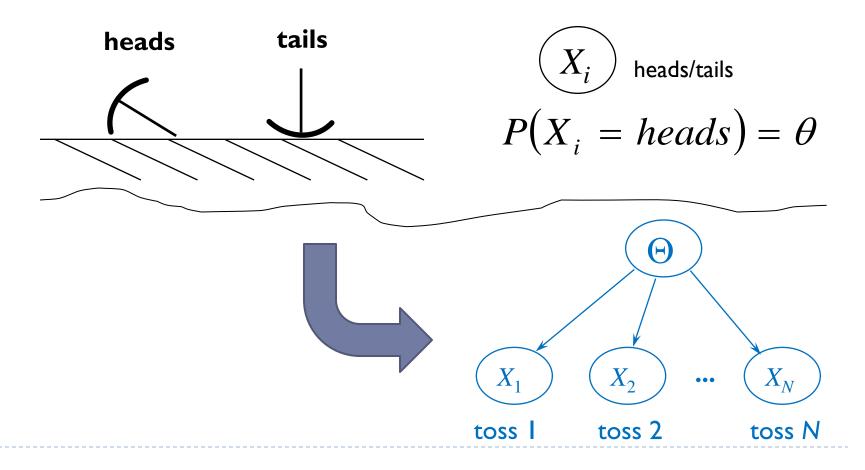
Learning in Bayes Nets

Thumbtack problem can be viewed as learning the CPT for a very simple Bayes Net:

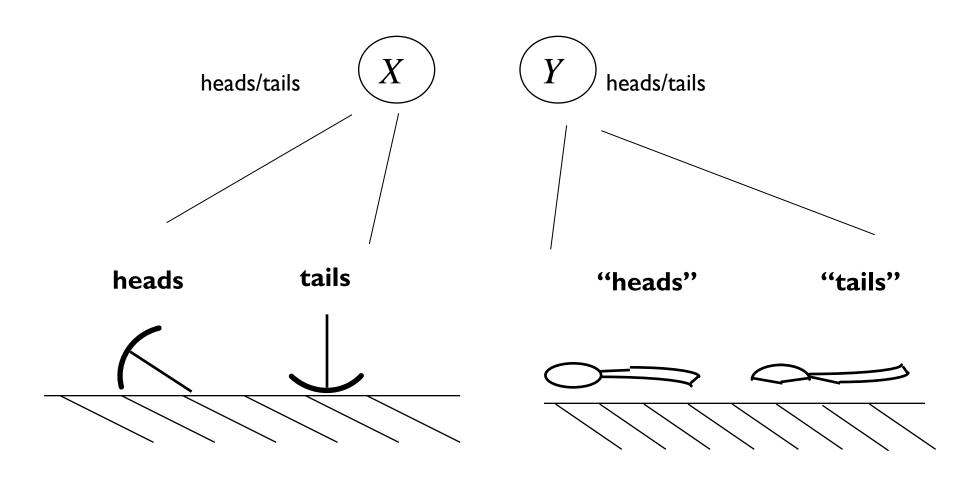


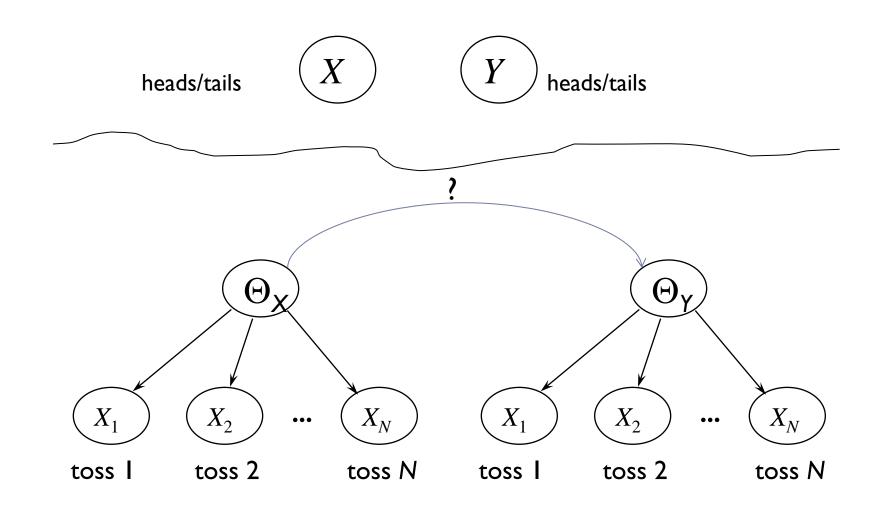
Learning as Inference

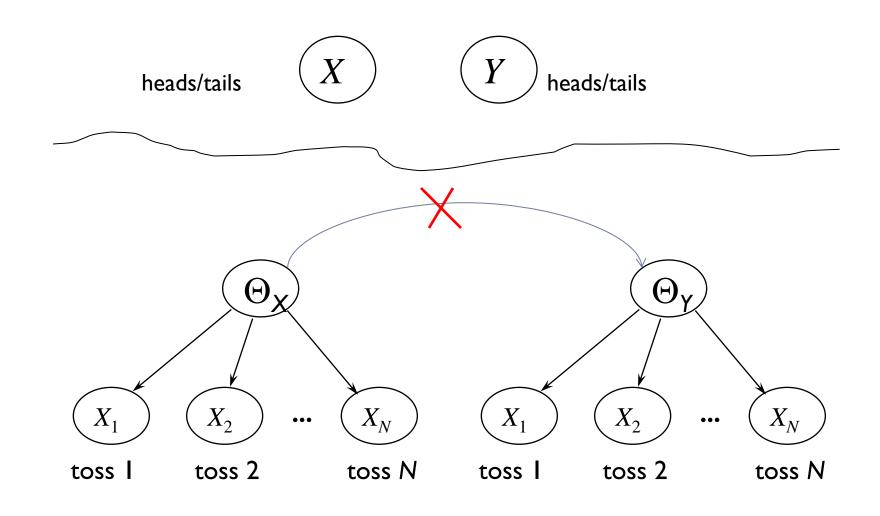
• Think of learning $P(\Theta = \theta \mid \{X_i\})$ as inference

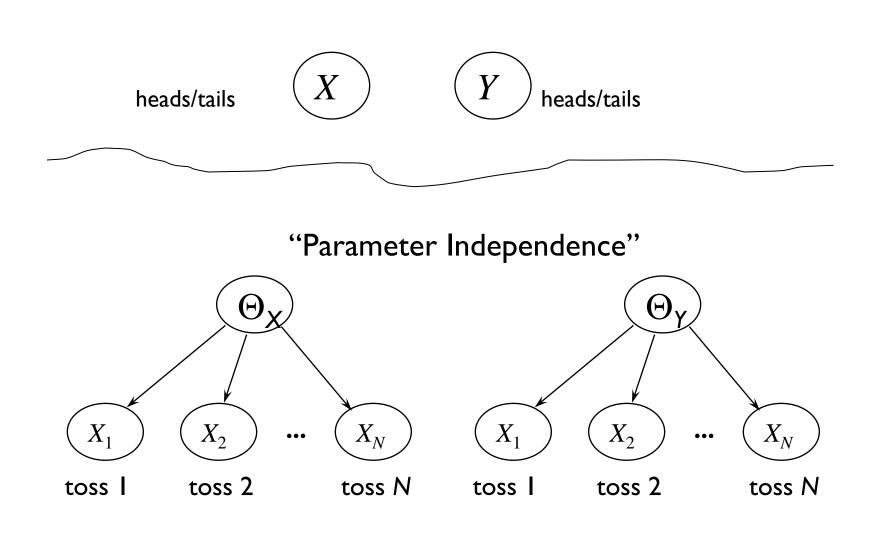


D

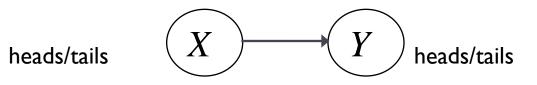








Getting Tougher

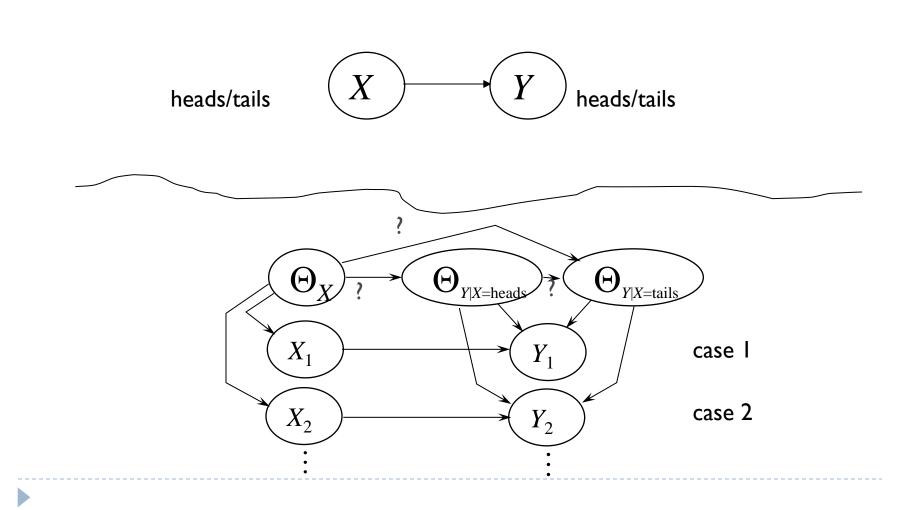


<u>Three probabilities to learn:</u>

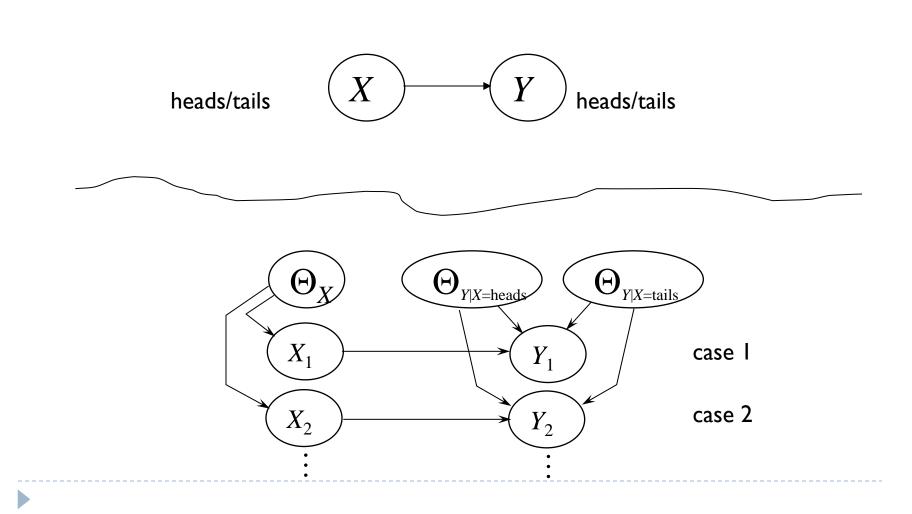
• $\theta_{X=\text{heads}}$

- θ_{Y=heads|X=heads}
 θ_{Y=heads|X=tails}

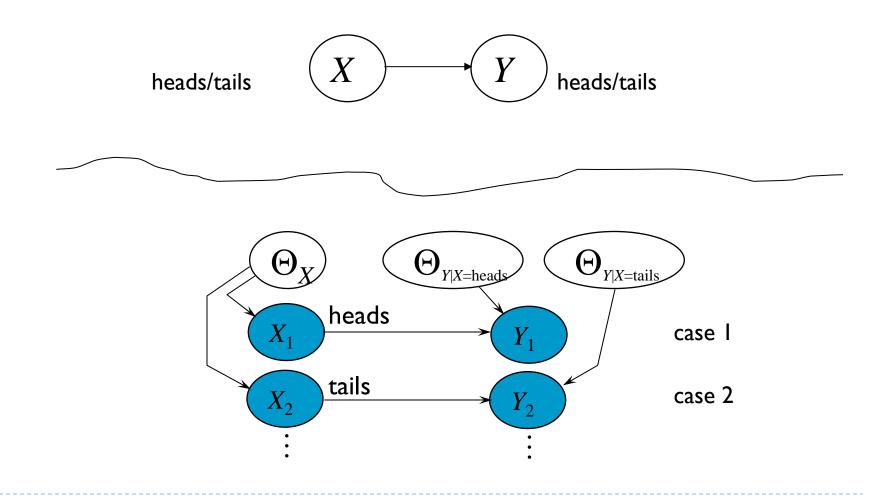
Learning as Inference



Parameter Independence



Three **Separate** Thumbtack Problems



Parameter Estimation in Bayes Nets

- Each CPT learned independently
- Easy when CPTs have convenient form
 - Multinomials
 - Maximum Likelihood = counting
 - Gaussian, Poisson, etc.
- And priors are conjugate

- E.g. Beta for Binomials, etc.
- And data is complete

Parameter Priors

MAP estimation

Training Data	
Α	B
I	I
I	0
I	0
0	I
I	I
0	I .
I	1

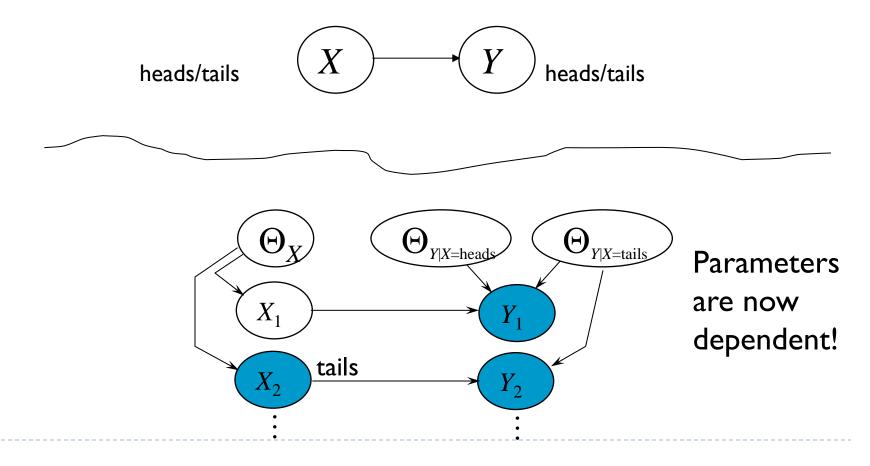
 $A \rightarrow B$ $P_{ML}(B \mid A=0) = 2/2 = 1.0$ $P_{MAP}(B \mid A=0)$ = (2+1)/(2+2) = 0.75"Laplace smoothing" ...same as $P(\Theta_{B \mid A=0}) = Beta(2, 2)$

Parameter Estimation in Bayes Nets

- Each CPT learned independently
- Easy when CPTs have convenient form
 - Multinomials
 - Maximum Likelihood = counting
 - Gaussian, Poisson, etc.
- And priors are conjugate
 - E.g. Beta for Binomials, etc.
- And data is complete

Incomplete Data

Say we don't know X₁



Incomplete Data in Practice

• Options:

- Just ignore it (for all examples)
- Replace missing Xi with most typical value in training set
- Sample Xi from P(Xi) in training set
- Let "unknown" be a value for Xi
- Try to infer missing values (special case: semi-supervised learning)

Today: Learning

General Rules of Thumb in Learning

Learning in Graphical Models

- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs.Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

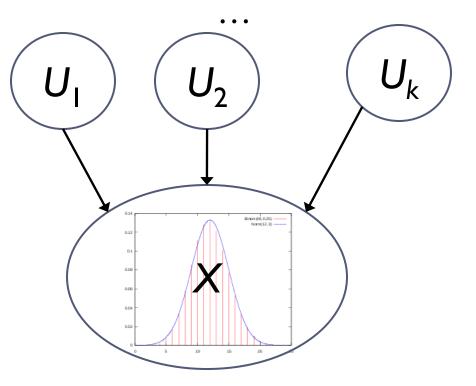
Learning Continuous CPTs

• Options:

- Discretize
 - Weka does this
 - Not a bad option
- Use canonical functions
 - Gaussians most popular
 - see Matlab's package or WinMine, etc.

Continuous CPT Example

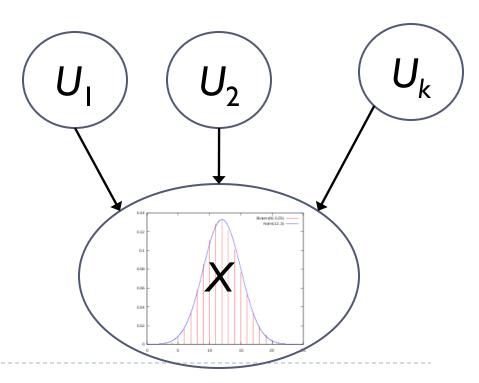
E.g., Linear Gaussian



 $\mathsf{P}(X \mid \boldsymbol{u}) = N(\beta_0 + \beta_1 u_1 + \dots \beta_k u_k; \sigma^2)$

Linear Gaussian

ML solution from system of equations, e.g.: $E[X] = \beta_0 + \beta_1 E[u_1] + \dots \beta_k E[u_k]$



Today: Learning

General Rules of Thumb in Learning

Learning in Graphical Models

- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- **Bias vs.Variance**
- Discriminative vs. Generative training
- Parameters in Markov Nets

 Efficacy of learning varies with Bayes Net structure and amount of training data

Bayes Net design impacts learning

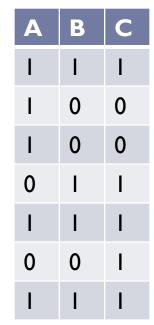
- Data required to learn a CPT grows roughly linearly with number of parameters
 - Fewer variables & edges is better
- Including more informative variables and relationships improves accuracy
 - More variables & edges is better (?)
- > selection of variables and edges is the art of Bayes
 Net design

Overfitting in Bayes Nets

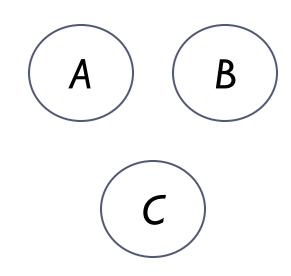


- Using P(C | A, B) => zero training error (vs. 17% error for P(C | B)), but cells have 12, 8, 4, 4 total samples
- > => Very susceptible to random noise

Training data is the following, repeated **4** times:

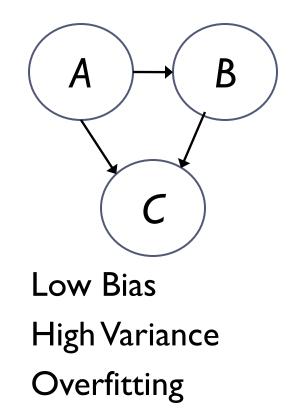


Bias vs. Variance (1 of 3)

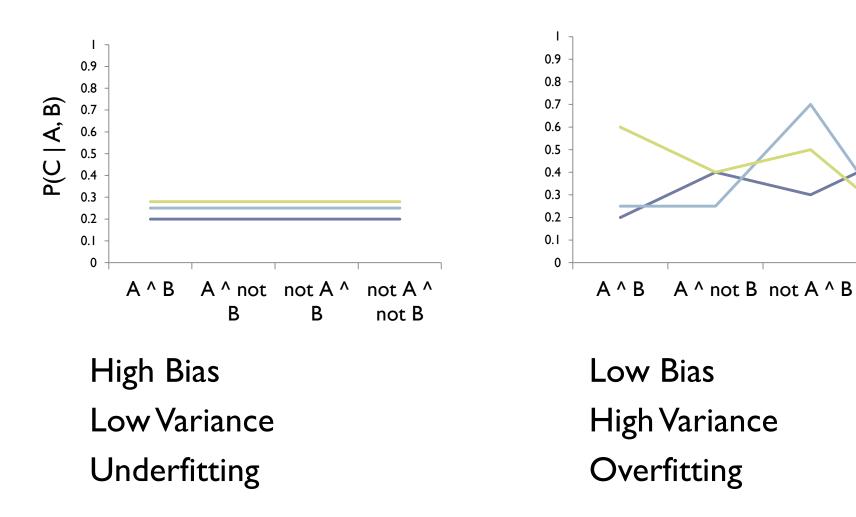


High Bias Low Variance Underfitting

D



Bias vs. Variance (2 of 3)

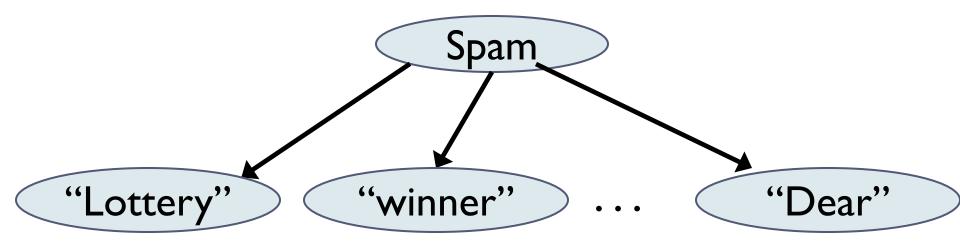


not A ^

not B

Bias vs. Variance (3 of 3)

- High bias sometimes okay
 - E.g. Naïve Bayes effective in practice



How do you choose?

Cross-validation

- And/or use heuristics for trading training accuracy for model complexity
 - Useful in automated structure learning
 - E.g., pick a structure and algorithmically refine
 - Next week

Learning

General Rules of Thumb in Learning

Learning in Graphical Models

- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs.Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Discriminative vs. Generative training

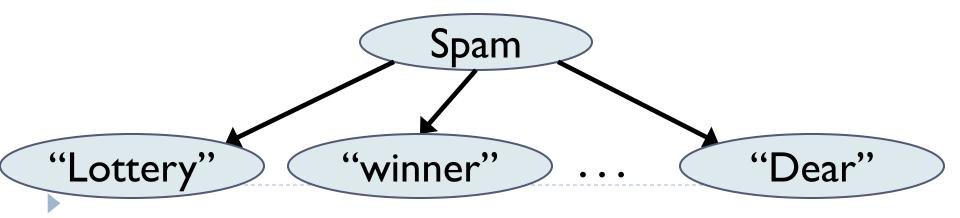
- Say our graph G has variables X, Y
- Previous method learns P(X, Y)
- But often, the only inferences we care about are of form
 P(Y | X)
 - P(Disease | Symptoms = e)
 - P(StockMarketCrash | RecentPriceActivity = e)

Discriminative vs. Generative training

- Learning P(X, Y): generative training
 - Learned model can "generate" the full data X, Y
- Learning only P(Y | X): discriminative training
 - Model can't assign probs. to X only Y given X
- Idea: Only model what we care about
 - Don't "waste data" on params irrelevant to task
 - Side-step false independence assumptions in training (example to follow)

Generative Model Example

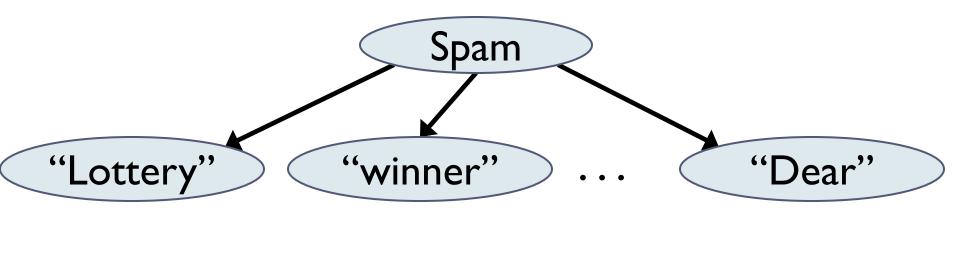
- Naïve Bayes model
 - Y binary {I=spam, 0=not spam}
 X an *n*-vector: message has word (I) or not (0)
 - Re-write P(Y | X) using Bayes Rule, apply Naïve Bayes assumption
 - > 2n + 1 parameters, for *n* observed variables



Generative => Discriminative (1 of 3)

• But $P(Y \mid X)$ can be written more compactly $P(Y \mid X) = \frac{1}{1 + \exp(w_0 + w_1 x_1 + ... + w_n x_n)}$

• Total of n + 1 parameters w_i



Generative => Discriminative (2 of 3)

• One way to do conversion (vars binary):

$$\exp(w_0) = \frac{P(Y=0) P(X_1=0|Y=0) P(X_2=0|Y=0)...}{P(Y=1) P(X_1=0|Y=1) P(X_2=0|Y=1)...}$$

for
$$i > 0$$
:

$$exp(w_i) = \frac{P(X_i=0|Y=1) P(X_i=1|Y=0)}{P(X_i=0|Y=0) P(X_i=1|Y=1)}$$

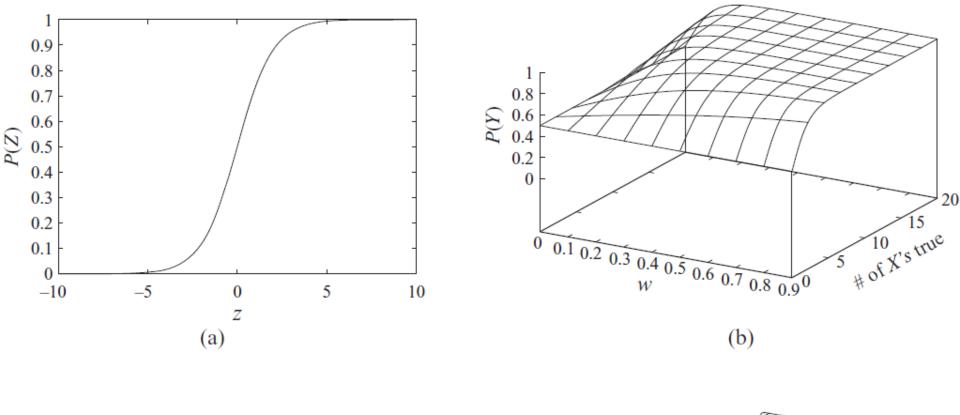
Generative => Discriminative (3 of 3)

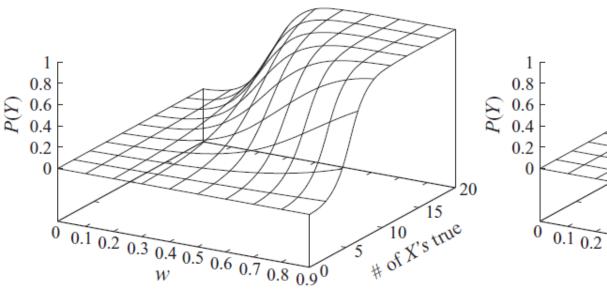
• We reduced 2n + 1 parameters to n + 1

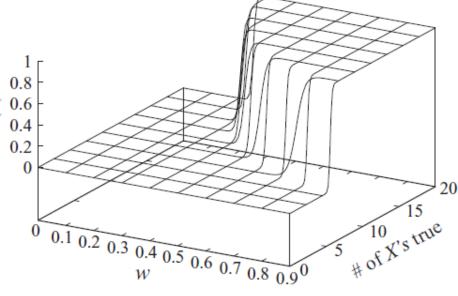
- Bias vs.Variance arguments says this must be better, right?
- Not exactly. If we construct P(Y | X) to be equivalent to Naïve Bayes (as before)
 - then it's...equivalent to Naïve Bayes
- Idea: optimize the n + 1 parameters directly, using training data

Discriminative Training

- In our example: $P(Y \mid X) = \frac{1}{1 + \exp(w_0 + w_1 x_1 + \dots + w_n x_n)}$
- Goal: find w_i that maximize likelihood of training data Ys given training data Xs
 - Known as "logistic regression"
 - Solved with gradient ascent techniques
 - A convex (actually concave) optimization problem







Naïve Bayes "trusts its assumptions" in training

Logistic Regression doesn't – recovers better when assumptions violated

NB vs. LR: Example

Training Data									
SPAM	Lotter	Winne	Lunc	Noon					
	Y	r	h						
1	I	T	0	0					
1	I	I	I	I					
0	0	0	T	I					
0	I	I	0	I					

- Naïve Bayes will classify the last example incorrectly, even after training on it!
- Whereas Logistic Regression is perfect with e.g., $w_0 = 0.1 \quad w_{\text{lottery}} = w_{\text{winner}} = w_{\text{lunch}} = -0.2 \quad w_{\text{noon}} = 0.4$

Logistic Regression in practice

- Can be employed for any numeric variables X_i
 - or for other variable types, by converting to numeric (e.g. indicator) functions
- "Regularization" plays the role of priors in Naïve Bayes
- Optimization tractable, but (way) more expensive than counting (as in Naïve Bayes)

Naïve Bayes vs. Logistic Regression one illustrative case

Applicable more broadly, whenever queries P(Y | X) known a priori

Learning

General Rules of Thumb in Learning

Learning in Graphical Models

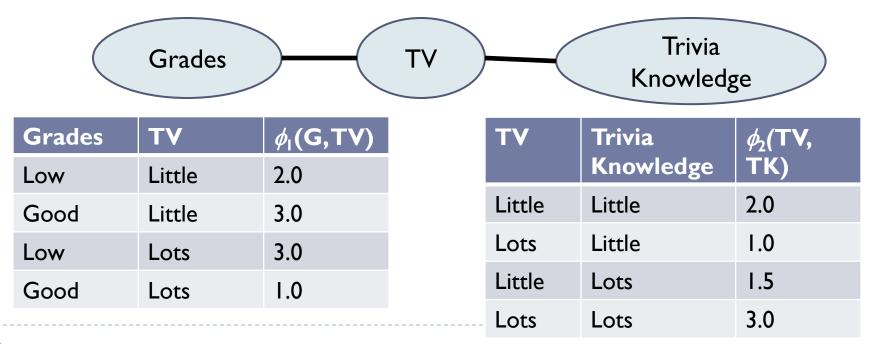
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs.Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Recall: Markov Networks

Undirected Graphical Model

D

• **Potential functions** ϕ_c defined over cliques



Log-linear Formulation (1 of 2)

$$P(\mathbf{x}) = \frac{\exp(\Sigma_i w_i f_i(\mathbf{D}_i))}{Z}$$

• Example, write $\phi_1(G,TV)$ as $\exp(w_1 f_1(G,TV) + ... + w_4 f_4(G, TV))$ (V)) $w_1 = \ln 2.0 \quad w_2 = \ln 3.0 \quad w_3 = \ln 3.0 \quad w_4 = \ln 1.0$

Grades TV										
Grades	Т٧	<i>φ</i> _I (G,TV)	f _l (G, TV)	f ₂ (G, TV)	f ₃ (G, TV)	f₄(G,TV				
Low	Little	2.0	1	0	0	0				
Good	Little	3.0	0	I	0	0				
Low	Lots	3.0	0	0	I	0				
Good	Lots	1.0	0	0	0	I				

Log-linear Formulation (2 of 2)

$$P(\mathbf{x}) = \frac{\exp(\Sigma_i w_i f_i(\mathbf{D}_i))}{Z}$$

D

- "Feature" f_i can be simpler than full potentials
- Learning easy to express

Learning in Markov Networks

- Harder than in Bayes Nets
- Why? In Bayes Nets, likelihood is:
 - ▶ P(Data | θ) = $\prod_{m \in Data} \prod_i P(X_i[m] | Parents(X_i)[m] : \theta_i)$ where $X_i[m]$ is the assignment to X_i in example m

 $= \prod_{i} \prod_{m \in \text{Data}} \mathsf{P}(X_{i}[m] | \operatorname{Parents}(X_{i})[m] : \theta_{i})$

• Assuming param independence, maximize global likelihood by maximizing each CPT likelihood $\Pi_{m \in \text{Data}} P(X_i[m] | \text{Parents}(X_i)[m] : \theta_i)$ independently

Learning in Markov Networks

- Harder than in Bayes Nets
- In Markov Net,
 Likelihood = P(Data | w) = Π_{m ∈ Data} exp(Σ_i w_if_i (D_i[m])) Z_w
- But Z_w = ∑_{x ∈ Val(X)} exp(Σ_i w_if_i(x))
 Sum over exps involving all w_i
- Can't decompose as we did in Bayes Net case

So what do we do?

Maximize likelihood using Gradient Ascent

Or 2nd order optimization

 $\partial / \partial w_i \ln P(\text{Data} | \mathbf{w}) = \mathbf{E}_{\text{Data}}[f_i(\mathbf{D}_i)] - \mathbf{E}_{\mathbf{w}}[f_i(\mathbf{D}_i)]$

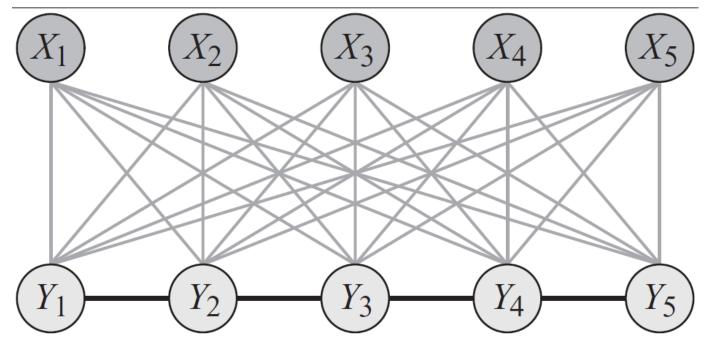
- Concave (no local maxima)
- Requires inference at each step
 - Slow

Approximation: Pseudo-likelihood

- ► Pseudo-likelihood PL(Data | θ) = $\Pi_{m \in \text{Data}} \Pi_i P(X_i[m] | \text{Neighbors}(X_i)[m] : \theta_i)$
 - Assume variables depend only on values of neighbors in data
- No more Z!
 - Easier to compute/optimize (decomposes)
- But not necessarily a great approximation
 - Equal to likelihood in limit of infinite training data

Discriminative Training

- Learn P(**Y** | **X**)
- $\partial / \partial w_i \ln P(\mathbf{Y}_{\text{Data}} | \mathbf{X}_{\text{Data}}, \mathbf{w}) = \sum_m (f_i(\mathbf{y}[m], \mathbf{x}[m])) \mathbf{E}_{\mathbf{w}}[f_i | \mathbf{x}[m]])$
- Rightmost term: run inference for each value **x**[m] in data



What have we learned?

General Rules of Thumb in Learning

Learning in Graphical Models

- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs.Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Rest of course

Next:

- Structure Learning
- After that:
 - Iearning with missing data (semi-supervised learning), HMMs