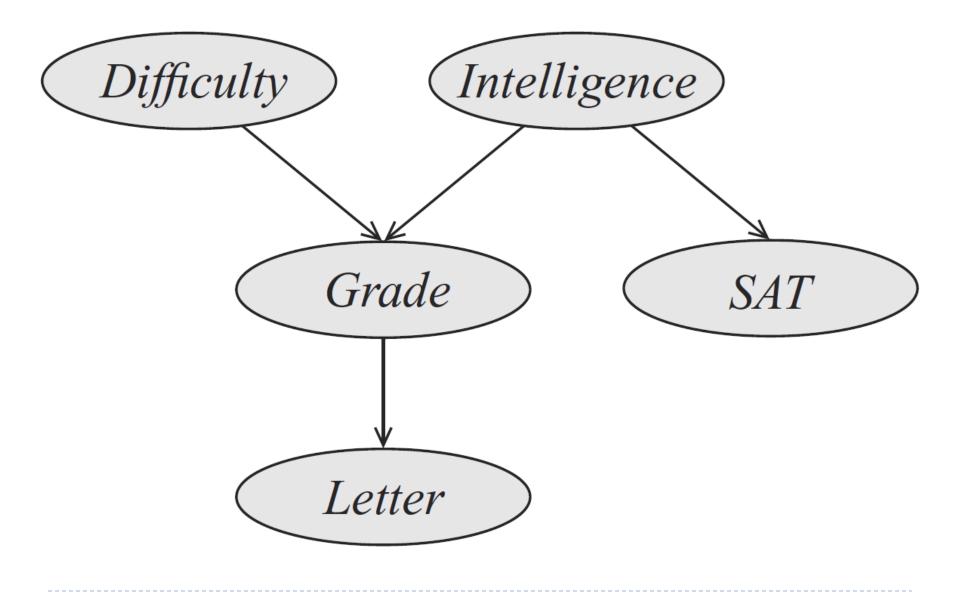
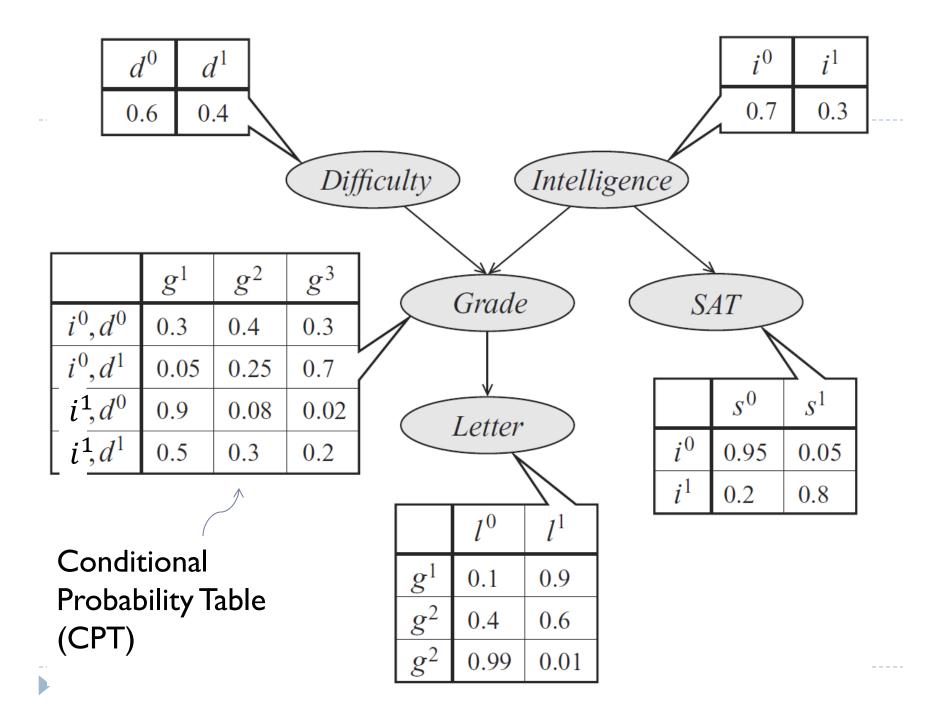
Bayesian Networks

Doug Downey EECS 395/495 Probabilistic Graphical Models

Begin with a graph

- Random variables as nodes
- Causal relationships as directed edges





What does this wacky thing do?

- BNs represent the joint distribution compactly
- You can obtain the BN's probabilities for an event by multiplying the relevant values from each CPT:

$$P(i^{1}, d^{0}, g^{2}, s^{1}, l^{0}) = \cdots$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	g^1	g^2	g^3		Grade		$\left(\right)$	S	AT		
i^{0}, d^{0}	0.3	0.4	0.3	\bigwedge					-	\sim	
i^{0}, d^{1}	0.05	0.25	0.7		V				<i>s</i> ⁰	s^1	
i^1, d^0	0.9	0.08	0.02	Letter				i^0			
$[i^1, d^1]$	0.5	0.3	0.2					i^{1}	0.95 0.2	0.05	
					l^0	l^1		l	0.2	0.8	
				g^1	0.1	0.9					
				g^2	0.4	0.6					
				g^2	0.99	0.01					

What does this wacky thing do?

- BNs represent the joint distribution compactly
- You can obtain the BN's probabilities for an event by multiplying the relevant values from each CPT:

$$P(i^{1}, d^{0}, g^{2}, s^{1}, l^{0})$$

= $P(i^{1})P(d^{0})P(g^{2}|i^{1}, d^{0})P(s^{1}|i^{1})P(l^{0}|g^{2})$
= $0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 = 0.004608$

Create a node for each important variable in domain

Connect nodes with causal edges

How? Domain knowledge
(or learn from data – more on this later)

Obtain CPTs

How? Use **data**, or write from domain knowledge

Bayes Net Advantages

Compactness

- Our "student" network has 15 independent parameters
- Vs. how many for a full joint distribution table?

Ease of inference

(more on this later)

From Graphs to Independencies

The Bayes Net encodes independencies

Independencies are what allow BN compactness

• Question:

Which independencies are encoded in a given BN graph?

Global Semantics

Þ

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$$

 Each node is conditionally independent of its nondescendants given its parents.

Theorem:
Local Independences <>> Global Semantics

What does the graph look like...

- No independence?
- All variables independent?
- Common Cause? Common Effect?
 - Correlation != causation
 - "Explaining away"

- Two nodes in G are d-separated unless there is an active trail between them
- An Active Trail between nodes X and Y given evidence nodes E is any path between X and Y such that
 - For any v-structure (A => C <= B) on the path, either C or one of its descendents is in E</p>
 - No other nodes on the path are in **E**