Basics of Probability

Lecture 1

Doug Downey, Northwestern EECS 395/495, Fall 2014

Events

- \blacktriangleright Event space Ω
 - E.g. for dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$

- ▶ Set of measurable events $S \subset 2^{\Omega}$
 - ▶ E.g., α = event we roll an even number = $\{2, 4, 6\} \in S$
 - S must:
 - lacktriangle Contain the empty event arnothing and the trivial event Ω
 - ▶ Be closed under union & complement
 - $\square \alpha, \beta \in S \rightarrow \alpha \cup \beta \in S$ and $\alpha \in S \rightarrow \Omega \alpha \in S$

Probability Distributions

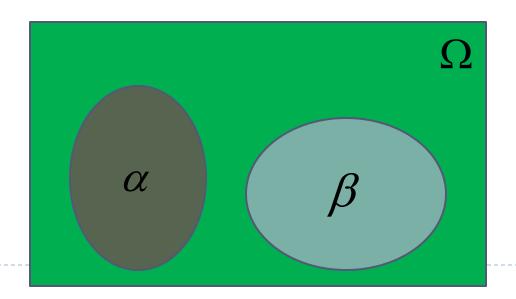
▶ A probability distribution P over (Ω, S) is a mapping from S to real values such that:

$$I.P(\alpha) \ge 0 \quad \forall \alpha \in S$$

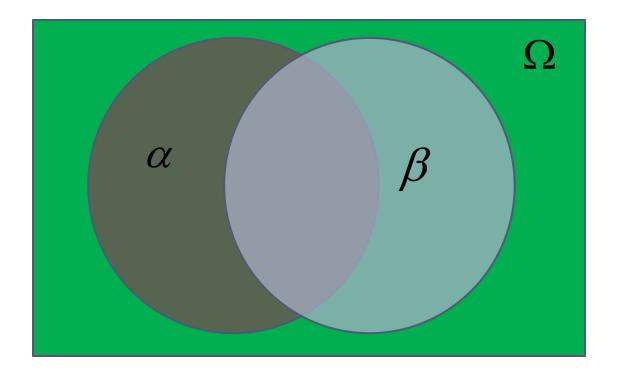
$$2.P(\Omega) = 1$$

Sidenote – Ist and 3rd axioms ensure *P* is a measure

3.
$$\alpha, \beta \in S \land \alpha \cap \beta = \emptyset \rightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$$



Probability Distributions



Can visualize probability as fraction of area

Probability: Interpretations & Motivation

- Interpretations: Frequentist vs. Bayesian
- Why use probability for subjective beliefs?
 - Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 1931]
 - Example: P(A) = 0.6, P(not A) = 0.8?
 - Example: P(A) > P(B) and P(B) > P(A)?

Random Variables

- \blacktriangleright A random variable is a function from Ω to a value
 - A partition of the event space Ω
 - A short-hand for referring to attributes of events
- Examples
 - $Ω = {1, 2, 3, 4, 5, 6}$ = Val(DieRollEven)

 DieRollEven ∈ {true, false}
 - ▶ Ω = {all possible hmwk/exam grade combinations} FinalGrade ∈ {a, b, c}

Joint Distributions

Grade	Interest	Course load	P(G, I, C)
a	high	full-time	0.10
a	high	part-time	0.08
a	low	full-time	0.03
a	low	part-time	0.04
b	high	full-time	0.07
b	high	part-time	0.02
b	low	full-time	0.12
b	low	part-time	0.16
С	high	full-time	0.01
С	high	part-time	0.02
С	low	full-time	0.20
С	low	part-time	0.15

Conditioning!

Grade	Interest	Course load	P(G, I, C)
a	high	full-time	0.10
â	high	part-time	0.08
a	low	full-time	0.03
â	low	part-time	0.04
b	high	full-time	0.07
Ь	high	part-time	0.02
b	low	full-time	0.12
Ь	low	part time	0.16
С	high	full-time	0.01
е	high	part time	0.02
С	low	full-time	0.20
С	low	part-time	0.15

Conditioning!

Grade	Interest	Course load	P(G, I, C)
a	high	full-time	0.10 / 0.53
a	low	full-time	0.03 / 0.53
b	high	full-time	0.07 / 0.53
b	low	full-time	0.12 / 0.53
С	high	full-time	0.01 / 0.53
С	low	full-time	0.20 / 0.53

0.53

Conditioning!

Grade	Interest	Course load	P(G, I C=f)
a	high	full-time	0.21
a	low	full-time	0.09
b	high	full-time	0.14
b	low	full-time	0.09
С	high	full-time	0.26
С	low	full-time	0.21

1.0

- ▶ P(Grade = A | Interest = High) = 0.6
 - the probability of getting an A given only Interest = High, and nothing else.
 - If we know Motivation = High or OtherInterests = Many, the probability of an A changes even given high Interest
- Formal Definition:
 - $P(\alpha \mid \beta) = P(\alpha, \beta) / P(\beta)$
 - ▶ When $P(\beta) > 0$

- Also:
 - $P(A \mid B, C) = P(A, B, C) / P(B, C)$
- More generally:
 - $P(A \mid B) = P(A, B) / P(B)$
 - ▶ (Boldface indicates vectors of variables)
- ▶ P(Grade = A | Grade = A, Interest = high) ?

Grade	Interest	Course load	P(G, I, C)
a	high	full-time	0.10
a	high	part-time	0.08
a	low	full-time	0.03
a	low	part-time	0.04
b	high	full-time	0.07
b	high	part-time	0.02
b	low	full-time	0.12
b	low	part-time	0.16
С	high	full-time	0.01
С	high	part-time	0.02
С	low	full-time	0.20
С	low	part-time	0.15

Grade	Interest	Course load	P(G, I, C)
a	high	*	0.10
a	high	*	0.08
a	low	*	0.03
a	low	*	0.04
b	high	*	0.07
b	high	*	0.02
b	low	*	0.12
b	low	*	0.16
С	high	*	0.01
С	high	*	0.02
С	low	*	0.20
С	low	*	0.15

Grade	Interest	Course load	P(G, I)
a	high	*	0.18
a	low	*	0.07
b	high	*	0.09
b	low	*	0.28
С	high	*	0.03
С	low	*	0.35

Grade	Interest	P(G, I)
a	high	0.18
a	low	0.07
b	high	0.09
b	low	0.28
С	high	0.03
С	low	0.35

1.0

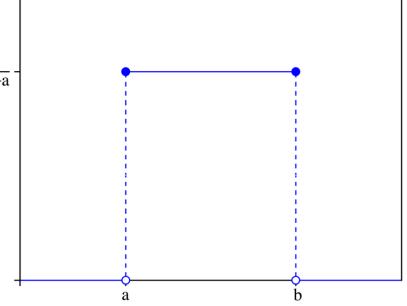
$$P(X) = \sum_{y \in Val(Y)} P(X, Y = y)$$

Continuous Random Variables

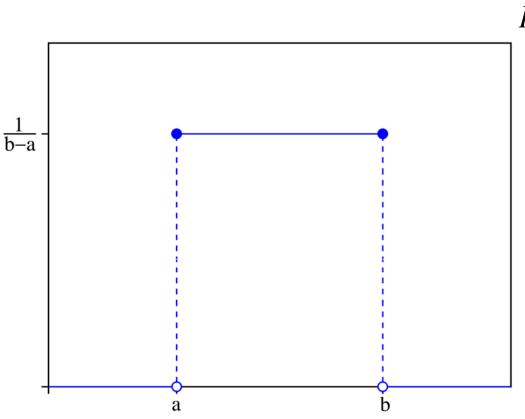
For continuous r.v. X, specify a density p(x), such that:

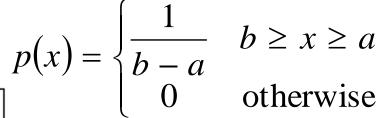
E.g.,
$$P(r \le X \le s) = \int_{x=r}^{s} p(x) dx$$

$$p(x) = \begin{cases} \frac{1}{b-a} & b \ge x \ge a \\ 0 & \text{otherwise} \end{cases}$$



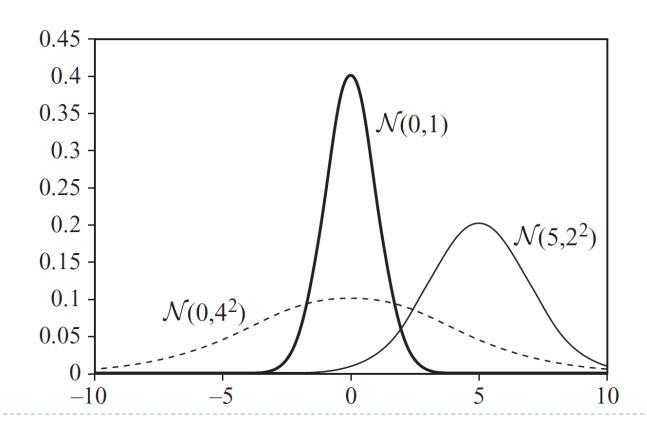
Uniform Continuous Density





Gaussian Density

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$



Joint Distribution

		Interest	
		low	high
	a	0.07	0.18
Grade	b	0.28	0.09
	С	0.35	0.03

Joint Distribution specified with 2*3 - 1 = 5 values

		Interest	
		low	high
	a	0.07	0.18
Grade	b	0.28	0.09
	С	0.35	0.03

```
P(Grade = a | Interest = high) ?
P(Grade = a, Interest = high) = 0.18
P(Interest = high) = 0.18 + 0.09 + 0.03 = 0.30
=> P(Grade = a | Interest = high) = 0.18/0.30 = 0.6
```


		Interest	
		low	high
	a	0.07	0.18
Grade	b	0.28	0.09
	С	0.35	0.03

P(Interest | Grade = a)?

Interest		
low	high	
0.28 0.72		

		Interest	
		low	high
Grade	a	0.07	0.18
	b	0.28	0.09
	С	0.35	0.03

P(Interest | Grade)?

Actually three separate distributions, one for each *Grade* value (has three independent parameters total)

Chain Rule

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid X_{i-1} = x_{i-1}, \dots, X_1 = x_1)$$

- E.g., P(Grade=b, Int. = high)
 = P(Grade=b | Int.= high)P(Int. = high)
- ▶ Can be used for distributions...
 - $P(A, B) = P(A \mid B)P(B)$

Handy Rules for Cond. Probability (1 of 2)

- \triangleright P(A | B = b) is a single distribution, like P(A)
- \triangleright P(A | B) is not a single distribution
 - ▶ a set of |Val(B)| distributions

Handy Rules for Cond. Probability (2 of 2)

- Any statement true for arbitrary distributions is also true if you condition on a new r.v.
 - P(A, B) = P(A | B)P(B)? (chain rule) Then also P(A, B | C) = P(A | B, C) P(B | C)
- Likewise, any statement true for arbitrary distributions is also true if you replace an r.v. with two/more new r.v.s
 - $P(A \mid B) = P(A, B) / P(B)$? (def. of cond. Prob)
 - $P(A \mid C, D) = P(A, C, D) / P(C, D) \text{ or } P(A \mid B) = P(A, B) / P(B)$

Independence

- ▶ $P(Rain \mid Cloudy) \neq P(Rain)$
 - But: P(FairDie=6 | PreviousRoll=6) = P(FairDie=6)
- We say A and B are independent iff

$$P(A \mid B) = P(A)$$

- ▶ Logically equivalent to P(A, B) = P(A)*P(B)
- \blacktriangleright Denoted A \perp B

Conditional Independence (1 of 2)

A and B are conditionally independent given C iff $P(A \mid B, C) = P(A \mid C)$

- Equivalent to $P(A, B \mid C) = P(A \mid C) P(B \mid C)$
- ▶ Denoted ($A \perp B \mid C$)

Conditional Independence (2 of 2)

- Example: university admissions
 - Val(GetIntoX) = {yes, no, wait}
 - Val(Application) = {good, bad}

3*3*2*2= **36** Parameters

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application)

P(GetIntoNU | Application)

2*2= 4 Parameters

Properties of Conditional Independence

Decomposition

$$(X \perp Y, W \mid Z) => (X \perp Y \mid Z)$$

Weak Union

$$(X \perp Y, W \mid Z) => (X \perp Y \mid Z, W)$$

Contraction

$$(X \perp W \mid Z, Y) & (X \perp Y \mid Z) => (X \perp Y, W \mid Z)$$

Expectation

Discrete

$$E_P[X] = \sum_x x P(x)$$

Continuous

$$E_P[X] = \int x \, p(x) \, dx$$

• E.g., *E*[FairDie]=3.5

Expectation is Linear

$$E_{P}[X+Y] = \sum_{x,y} (x+y)P(x,y)$$

$$= \sum_{x,y} x P(x,y) + \sum_{x,y} y P(x,y)$$

$$= \sum_{x} x \sum_{y} P(x,y) + \sum_{y} y \sum_{x} P(x,y)$$

$$= \sum_{x} x P(x) + \sum_{y} y P(y) = E_{P}[X] + E_{P}[Y]$$

What have we learned?

- Probability a calculus for dealing with uncertainty
 - Built from small set of axioms (ignore at your peril)
- ▶ Joint Distribution P(A, B, C, ...)
 - Specifies probability of all combinations of r.v.s
- Conditional Probability P(A | B)
 - Specifies probability of A=a given B=b
- Conditional Independence
 - Can radically reduce number of model parameters
- Expectation
- Next time: Bayes' Rule, Statistical Estimation

