Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks (briefly; we'll come back to this)
- Inference
- Learning
- Semi-supervised Learning, Hidden Markov Models
- Papers on active learning

Inference: Variable Elimination

Doug Downey

Northwestern EECS 395/495 Fall 2013

Inference: Answering Queries

- Given:
- A probability model
- Subsets of random variables
- \boldsymbol{Y} (query) and
- \boldsymbol{E} (evidence) with assignments \boldsymbol{e} to \boldsymbol{E}
- Find $\mathrm{P}(\boldsymbol{Y} \mid \boldsymbol{E}=\boldsymbol{e})$
- E.g.,
$-\mathrm{P}($ Battery \mid Starts = false)
$-\mathrm{P}($ Disease \mid Symptoms $=\boldsymbol{e})$
- P(StockMarketCrash | RecentPriceActivity = e)

What else can we do with queries?

- Prioritizing info gathering
- Which additional evidence would be most informative?
- Explanation
- Why do I need a new fan belt?
- Sensitivity Analysis
- Which variable values are most critical?

Gee, it's easy

- $\mathrm{P}(\boldsymbol{Y} \mid \boldsymbol{E}=\boldsymbol{e})=\frac{\mathrm{P}(\boldsymbol{Y}, \boldsymbol{e})}{\mathrm{P}(\boldsymbol{e})}$
- Given joint $P(\boldsymbol{y}, \boldsymbol{e}, \boldsymbol{w})$, we can compute r.h.s. by summing out $\boldsymbol{w}, \boldsymbol{y}$

But...

- Naïve summing is costly

- $\mathrm{P}(D)=\Sigma_{\mathrm{A}} \Sigma_{\mathrm{B}} \Sigma_{\mathrm{C}} \mathrm{P}(A) \mathrm{P}(B \mid A) \mathrm{P}(C \mid B) \mathrm{P}(D \mid C)$
$-2^{3}=8$ combinations, $8^{*} 3=24$ multiplications
- Exponential in \# of variables

Variable Elimination

Variable Elimination

Has 4+4+4=12 multiplications (vs. 24)

- For n-edge binary chain, only $4 n$ multiples

With evidence

Variable Elimination

- Two steps:
- Push summations as far as possible to right (assuming some ordering of variables)
- Compute the sum

$$
\begin{gathered}
\mathrm{P}(D \mid A=a)=\Sigma_{\mathrm{B}} \Sigma_{\mathrm{C}} \mathrm{P}(D \mid C) \mathrm{P}(C \mid B) \mathrm{P}(B \mid A=a) \\
=\Sigma_{\mathrm{C}} \mathrm{P}(D \mid C) \Sigma_{\mathrm{B}} \mathrm{P}(C \mid B) \mathrm{P}(B \mid A=a)
\end{gathered}
$$

"Factors"

- $P(A, B, C, D)$

- Scope $\left[\phi_{4}\right]=\{D, C\}$
- Variable Elimination: write out joint as factors
- factor ϕ_{i} out of sum over X when $X \notin$ scope [ϕ_{i}]

Discarding non-Ancestors

- $P(A, B, C, D)$

$$
=P(A) P(C) P(B \mid A, C) P(D \mid C)
$$

- Query: $P(B, C \mid A=a)$

$$
\begin{aligned}
& =\Sigma_{\mathrm{D}} P(C) P(B \mid A=\mathrm{a}, C) P(D \mid C) \\
& =P(C) P(B \mid A=\mathrm{a}, C) \Sigma_{\mathrm{D}} P(D \mid C)
\end{aligned}
$$

- $\Sigma_{D} P(D \mid C)=1$ for all C, we can ignore it
- In general: when computing $P(Y \mid E)$ we can ignore nodes not in Ancestors($\boldsymbol{Y}, \boldsymbol{E}$)

Discard by separation in Markov Network

- $P(A, B, C, D, E)$
$=P(E) P(A \mid E) P(C) P(B \mid A, C) P(D \mid C)$
- Query: $P(B, C \mid A=a)$
- Throw out variables separated from query by evidence in moral graph

Semantics of summed-out factors

- Sums don't always correspond to simple conditional probabilities

Complexity of Inference

- What does variable elimination buy us?
- It depends on the network
- If the distribution doesn't factor well, elimination won't help
- Generally, Bayesian Inference is hard
- NP-complete problems can be reduced to it

Reduction to Boolean Satisfiability (1)

- Boolean Satisfiability
- Given a boolean formula in 3-CNF, e.g.:

$$
(x 1 \vee-x 3 \vee x 7) \wedge(x 4 \vee x 5 \vee-x 6)
$$

Is there an assignment to variables (i.e. $\mathrm{xi}=$ true|false) that makes the formula true?

Reduction to Boolean Satisfiability (2)

- (x1 v -x3 v x7) ^ (x4 v x5 v -x6)
- Let $\mathrm{Q}_{\mathrm{i}}=\mathbf{x i}$
$-C_{i}=$ clauses (e.g. (x1 v-x3vex))
$-\mathbf{X}=1$ iff all C_{i} are true, $A_{i}=$ "and" variables

Inference complexity details

- Actually \#P-complete
- Asking for probability \approx counting number of satisfying assignments
- Even approximation is NP-hard
- (see book)

