
Application: HMMs for 

Information Extraction (IE) 

• IE: Text  machine-understandable data 
 
 

Paris, the capital of France, … 
 

  

 

(Paris, France)  CapitalOf, p=0.85 

 

• Applied to Web: better search engines, semantic 
Web, step toward human-level AI 



IE Automatically? 

Intractable to get human labels for every concept expressed 

on the Web 

 

Idea: extract from semantically tractable sentences 

 
…Edison invented the light bulb… 

(Edison, light bulb)  Invented  

 x V y => (x, y)  V 

 
…Bloomberg, mayor of New York City… 

(Bloomberg, New York City)  Mayor 

 x, C of y => (x, y)  C 



Extraction patterns make errors: 

“Erik Jonsson, CEO of Texas Instruments, 

mayor of Dallas from 1964-1971, and…” 

Extraction patterns make errors: 

“Erik Jonsson, CEO of Texas Instruments, 

mayor of Dallas from 1964-1971, and…” 
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But… 

• Empirical fact: 

 Extractions you see over and over tend to be correct 

 The problem is the “long tail” 
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A mixture of correct and incorrect 

e.g., (Dave Shaver, Pickerington) 

 (Ronald McDonald, McDonaldland) 

Tend to be correct 

e.g., (Bloomberg, New York City) 

Challenge: the “long tail” 
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Mayor McCheese 
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Strategy 

1) Model how common extractions occur in text 

2) Rank sparse extractions by fit to model 

 

Assessing Sparse Extractions 
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• Terms in the same class tend to appear in 

similar contexts. 
 

“cities including __” 42,000 1 

“__ and other cities” 37,900 0 

The Distributional Hypothesis 

                           Hits with       Hits with 
Context                                 Chicago   Twisp 

“__ hotels” 2,000,000 1,670 

“mayor of __” 657,000 82 
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• Precomputed – scalable 

 

 

• Handle sparsity 
 

HMM Language Models 
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… 

cities such as Chicago , Boston , 

But Chicago isn’t the best 

cities such as Chicago , Boston , 

Los Angeles and Chicago . 

… 

 

 

 

• Compute dot products between vectors of 

common and sparse extractions  
[cf. Ravichandran et al. 2005] 

1 2 1 … … 

Baseline: context vectors 
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ti ti+1 ti+2  ti+3 

wi wi+1 wi+2 wi+3 

cities  such    as   Seattle 

Hidden Markov Model (HMM) 

States – unobserved 

Words – observed  

Hidden States ti  {1, …, N} (N fairly small) 

Train on unlabeled data 

   – P(ti  | wi = w) is N-dim. distributional summary of w 

   – Compare extractions using KL divergence 
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Twisp:    <                                          > 

 

 
 

P(t | Twisp):  

 

Distributional Summary P(t | w) 

 Compact (efficient – 10-50x less data retrieved) 

 Dense (accurate – 23-46% error reduction) 

. . . 0 0 0 1 . . . 

0.14 0.01 … 0.06 

 t=1      2             N 

HMM Compresses Context Vectors 
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Is Pickerington of the same  
type as Chicago? 

 

Chicago , Illinois 

Pickerington , Ohio 

 

   Chicago: 

   Pickerington: 
   

        => Context vectors say no,  
           dot product is 0! 

291 0 … 

0 1 … 

Example 
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HMM Generalizes: 

 

 

 

     Chicago     ,  Illinois 

 

 

 

      Pickerington  ,    Ohio 

 

Example 
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Task: Ranking sparse TextRunner extractions. 

Metric: Area under precision-recall curve. 

 

 

 

 

Language models reduce missing area by 39% over 

nearest competitor. 

Experimental Results 

Headquartered Merged Average 

Frequency 0.710 0.784 0.713 

PL 0.651 0.851 … 0.785 

LM 0.810 0.908 0.851 



Example word distributions (1 of 2) 

• P(word | state 3) 

 unk0   0.0244415 

 new   0.0235757 

 more   0.0123496 

 unk1   0.0119841 

 few   0.0114422 

 small   0.00858043 

 good   0.00806342 

 large   0.00736572 

 great   0.00728838 

 important  0.00710116 

 other   0.0067399 

 major   0.00628244 

 little   0.00545736 

 … 

• P(word | state 24) 

 ,   0.49014 

 .   0.433618 

 ;   0.0079789 

 --  0.00365591 

 -  0.00302614 

 !   0.00235752 

 :   0.001859 



Example word distributions (2 of 2) 

• P(word | state 1) 
 unk1   0.116254 

 United+States  0.012609 

 world   0.009212 

 U.S   0.007950 

 University  0.007243 

 Internet   0.007152 

 time   0.005167 

 end   0.004928 

 unk0   0.004818 

 war   0.004260 

 country   0.003774 

 way   0.003528 

 city   0.003429 

 US   0.003269 

 Sun   0.002982 

 Earth   0.002628 
 … 

• P(word | state 3) 
 the  0.863846  

 a  0.0131049 

 an  0.00960474  

 its  0.008541  

 our  0.00650477 

 this  0.00366675 

 unk1  0.00313899 

 your  0.00265876 



Correlation between LM and IE accuracy 

Below: correlation coefficients  

 

As LM error decreases, IE accuracy increases 



Correlation between LM and IE accuracy 

  



Correlation between LM and IE accuracy 

  



What this suggests 

• Better HMM language models => better information 

extraction 

 

• Better HMM language models => … => human-level 

AI? 

 Consider: a good enough LM could do question answering, 

pass the Turing Test, etc. 

 

• There are lots of paths to human-level AI, but LMs 

have: 

 Well-defined progress 

 Ridiculous amounts of training data 



Also: active learning 

• Today, people train language models by “taking 

what comes” 

 Larger corpora => better language models 

 

• But corpus size limited by # of humans typing 

 What if we asked for the most informative 

sentences?  (active learning) 

 



What have we learned? 

• In HMMs, general Bayes Net algorithms have 

simple & efficient form 
1. Evaluation 

GIVEN  a HMM M,  and a sequence x, 

FIND  Prob[ x | M ] 

Forward Algorithm and Backward Algorithm (Variable Elimination) 

2. Decoding 

GIVEN a HMM M,  and a sequence x, 

FIND the sequence  of states that maximizes P[ x,  | M ] 

Viterbi Algorithm (MAP query) 

3. Learning 

GIVEN A sequence x, 

FIND HMM parameters  = (ei(.), aij) that maximize P[ x |  ] 

Baum-Welch/Forward-Backward algorithm (EM) 



What have we learned? 

• Unsupervised Learning of HMMs can power 

more scalable, accurate unsupervised IE 


