
Application: HMMs for

Information Extraction (IE)

• IE: Text machine-understandable data

Paris, the capital of France, …

(Paris, France) CapitalOf, p=0.85

• Applied to Web: better search engines, semantic
Web, step toward human-level AI

IE Automatically?

Intractable to get human labels for every concept expressed

on the Web

Idea: extract from semantically tractable sentences

…Edison invented the light bulb…

(Edison, light bulb) Invented

 x V y => (x, y) V

…Bloomberg, mayor of New York City…

(Bloomberg, New York City) Mayor

 x, C of y => (x, y) C

Extraction patterns make errors:

“Erik Jonsson, CEO of Texas Instruments,

mayor of Dallas from 1964-1971, and…”

Extraction patterns make errors:

“Erik Jonsson, CEO of Texas Instruments,

mayor of Dallas from 1964-1971, and…”

3

But…

• Empirical fact:

 Extractions you see over and over tend to be correct

 The problem is the “long tail”

4

0

250

500

0 50000 100000

Frequency rank of extraction

N
u

m
b

e
r

o
f

ti
m

e
s

 e
x

tr
a

c
ti

o
n

a
p

p
e

a
rs

 i
n

 p
a

tt
e

rn

A mixture of correct and incorrect

e.g., (Dave Shaver, Pickerington)

 (Ronald McDonald, McDonaldland)

Tend to be correct

e.g., (Bloomberg, New York City)

Challenge: the “long tail”

5

Mayor McCheese

6

Strategy

1) Model how common extractions occur in text

2) Rank sparse extractions by fit to model

Assessing Sparse Extractions

7

• Terms in the same class tend to appear in

similar contexts.

“cities including __” 42,000 1

“__ and other cities” 37,900 0

The Distributional Hypothesis

 Hits with Hits with
Context Chicago Twisp

“__ hotels” 2,000,000 1,670

“mayor of __” 657,000 82

8

• Precomputed – scalable

• Handle sparsity

HMM Language Models

9

…

cities such as Chicago , Boston ,

But Chicago isn’t the best

cities such as Chicago , Boston ,

Los Angeles and Chicago .

…

• Compute dot products between vectors of

common and sparse extractions
[cf. Ravichandran et al. 2005]

1 2 1 … …

Baseline: context vectors

10

ti ti+1 ti+2 ti+3

wi wi+1 wi+2 wi+3

cities such as Seattle

Hidden Markov Model (HMM)

States – unobserved

Words – observed

Hidden States ti {1, …, N} (N fairly small)

Train on unlabeled data

 – P(ti | wi = w) is N-dim. distributional summary of w

 – Compare extractions using KL divergence

11

Twisp: < >

P(t | Twisp):

Distributional Summary P(t | w)

 Compact (efficient – 10-50x less data retrieved)

 Dense (accurate – 23-46% error reduction)

. . . 0 0 0 1 . . .

0.14 0.01 … 0.06

 t=1 2 N

HMM Compresses Context Vectors

12

Is Pickerington of the same
type as Chicago?

Chicago , Illinois

Pickerington , Ohio

 Chicago:

 Pickerington:

 => Context vectors say no,
 dot product is 0!

291 0 …

0 1 …

Example

13

HMM Generalizes:

 Chicago , Illinois

 Pickerington , Ohio

Example

14

Task: Ranking sparse TextRunner extractions.

Metric: Area under precision-recall curve.

Language models reduce missing area by 39% over

nearest competitor.

Experimental Results

Headquartered Merged Average

Frequency 0.710 0.784 0.713

PL 0.651 0.851 … 0.785

LM 0.810 0.908 0.851

Example word distributions (1 of 2)

• P(word | state 3)

 unk0 0.0244415

 new 0.0235757

 more 0.0123496

 unk1 0.0119841

 few 0.0114422

 small 0.00858043

 good 0.00806342

 large 0.00736572

 great 0.00728838

 important 0.00710116

 other 0.0067399

 major 0.00628244

 little 0.00545736

 …

• P(word | state 24)

 , 0.49014

 . 0.433618

 ; 0.0079789

 -- 0.00365591

 - 0.00302614

 ! 0.00235752

 : 0.001859

Example word distributions (2 of 2)

• P(word | state 1)
 unk1 0.116254

 United+States 0.012609

 world 0.009212

 U.S 0.007950

 University 0.007243

 Internet 0.007152

 time 0.005167

 end 0.004928

 unk0 0.004818

 war 0.004260

 country 0.003774

 way 0.003528

 city 0.003429

 US 0.003269

 Sun 0.002982

 Earth 0.002628
 …

• P(word | state 3)
 the 0.863846

 a 0.0131049

 an 0.00960474

 its 0.008541

 our 0.00650477

 this 0.00366675

 unk1 0.00313899

 your 0.00265876

Correlation between LM and IE accuracy

Below: correlation coefficients

As LM error decreases, IE accuracy increases

Correlation between LM and IE accuracy

Correlation between LM and IE accuracy

What this suggests

• Better HMM language models => better information

extraction

• Better HMM language models => … => human-level

AI?

 Consider: a good enough LM could do question answering,

pass the Turing Test, etc.

• There are lots of paths to human-level AI, but LMs

have:

 Well-defined progress

 Ridiculous amounts of training data

Also: active learning

• Today, people train language models by “taking

what comes”

 Larger corpora => better language models

• But corpus size limited by # of humans typing

 What if we asked for the most informative

sentences? (active learning)

What have we learned?

• In HMMs, general Bayes Net algorithms have

simple & efficient form
1. Evaluation

GIVEN a HMM M, and a sequence x,

FIND Prob[x | M]

Forward Algorithm and Backward Algorithm (Variable Elimination)

2. Decoding

GIVEN a HMM M, and a sequence x,

FIND the sequence of states that maximizes P[x, | M]

Viterbi Algorithm (MAP query)

3. Learning

GIVEN A sequence x,

FIND HMM parameters = (ei(.), aij) that maximize P[x |]

Baum-Welch/Forward-Backward algorithm (EM)

What have we learned?

• Unsupervised Learning of HMMs can power

more scalable, accurate unsupervised IE

