Application: HMMs for Information Extraction (IE)

IE: Text → machine-understandable data

Paris, the capital of France, ...

(Paris, France) \in CapitalOf, p=0.85

 Applied to Web: better search engines, semantic Web, step toward human-level AI

IE Automatically?

Intractable to get human labels for every concept expressed on the Web

Idea: extract from semantically tractable sentences

...Edison invented the light bulb... (Edison, light bulb) \in Invented $x \ V \ y => (x, \ y) \in V$

...Bloomberg, mayor of New York City... \Rightarrow (Bloomberg, New York City) \in Mayor x, C of $y => (x, y) \in C$

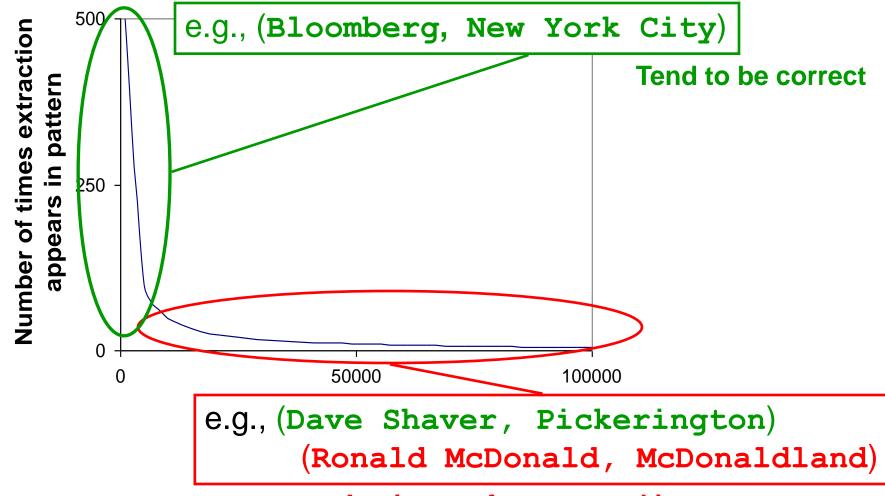
But...

Extraction patterns make errors:

"Erik Jonsson, CEO of **Texas Instruments**, mayor of **Dallas** from 1964-1971, and..."

- Empirical fact:
 - Extractions you see over and over tend to be correct
 - The problem is the "long tail"

Challenge: the "long tail"



A *mixture* of correct and incorrect

Mayor McCheese

Assessing Sparse Extractions

Strategy

- 1) Model how common extractions occur in text
- 2) Rank sparse extractions by fit to model

• Terms in the same class tend to appear in similar contexts.

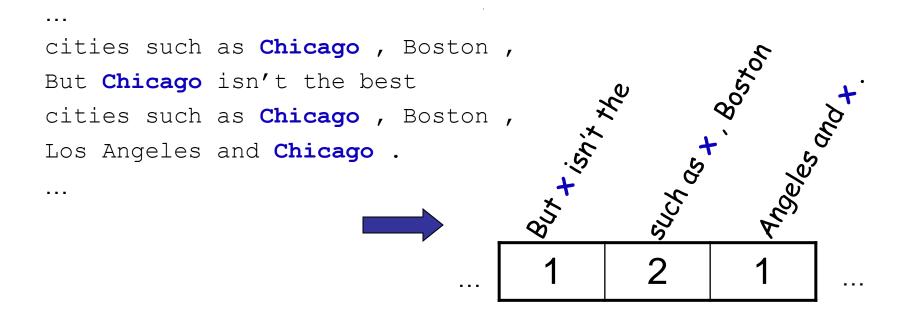
42,000	1
37,900	0
,000,000	1,670
657,000	82
)	,000,000

HMM Language Models

• Precomputed – scalable

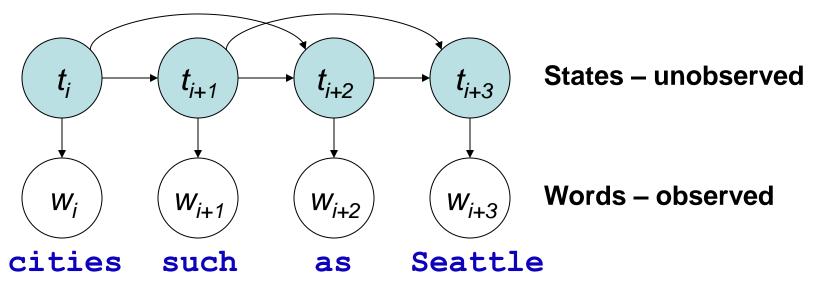
• Handle sparsity

Baseline: context vectors



 Compute dot products between vectors of common and sparse extractions
[cf. Ravichandran et al. 2005]

Hidden Markov Model (HMM)



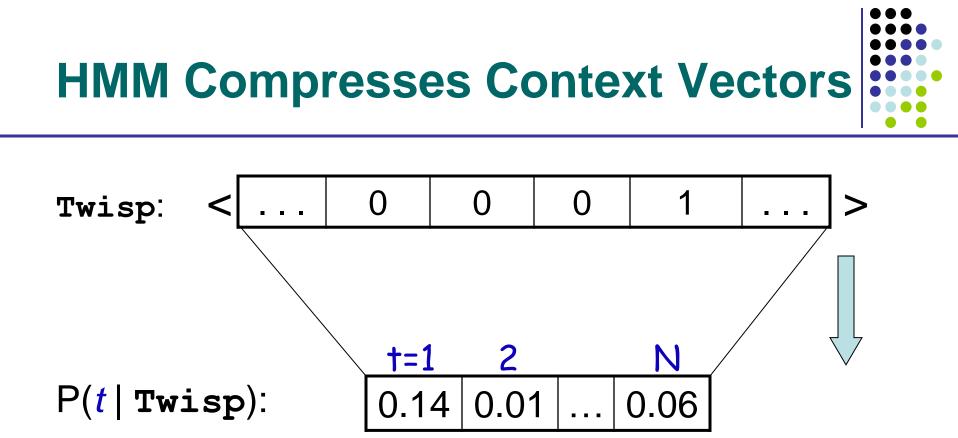
Hidden States $t_i \in \{1, \ldots, N\}$

(*N* fairly small)

Train on unlabeled data

 $-P(t_i | w_i = w)$ is *N*-dim. distributional summary of w

- Compare extractions using KL divergence



Distributional Summary P(t | w)

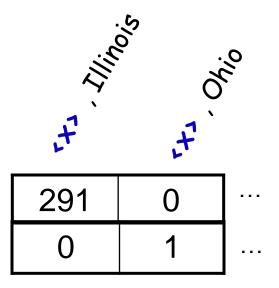
- Compact (efficient 10-50x less data retrieved)
- Dense (accurate 23-46% error reduction)

Example

Is **Pickerington** of the same type as **Chicago**?

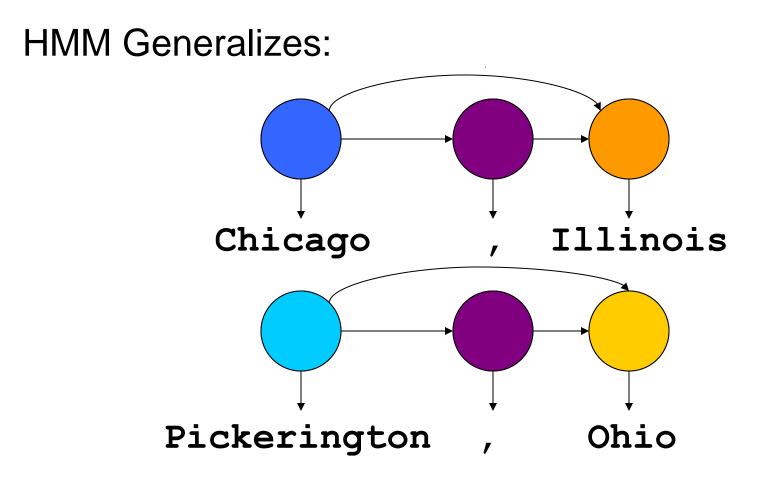
Chicago , Illinois Pickerington , Ohio

> Chicago: Pickerington:



=> Context vectors say no, dot product is 0!

Example



Experimental Results

Task: Ranking sparse TextRunner extractions. Metric: Area under precision-recall curve.

	Headquartered	Merged	Average
Frequency	0.710	0.784	0.713
PL	0.651	0.851	 0.785
LM	0.810	0.908	0.851

Language models reduce missing area by **39%** over nearest competitor.

Example word distributions (1 of 2)

0.00728838

0.00710116

- P(word | state 3)
 - unk0 0.0244415
 - new 0.0235757
 - more 0.0123496
 - unk1 0.0119841
 - few 0.0114422
 - small 0.00858043
 - good 0.00806342
 - large 0.00736572
 - great
 - important
 - other 0.0067399
 - major 0.00628244
 - little 0.00545736

P(word | state 24)

,

•

_

- -

- 0.49014
 - 0.433618
 - 0.0079789
 - 0.00365591
 - 0.00302614
 - 0.00235752
 - 0.001859

...

Example word distributions (2 of 2)

0.116254

0.009212

0.007950

0.007243

0.007152

0.005167

0.004928

0.004260

0.003774

0.003528

0.003429

0.003269

0.002982

0.002628

- P(word | state 1)
 - unk1
 - United+States 0.012609
 - world
 - U.S
 - University
 - Internet
 - time
 - end
 - unk0 0.004818
 - war
 - country
 - way
 - city
 - US
 - Sun

Earth

- P(word | state 3)
 - the 0.863846
 - 0.0131049 а
 - its

an

our

- this
- unk1
- your

- 0.00960474 0.008541
- 0.00650477
- 0.00366675
- 0.00313899
- 0.00265876

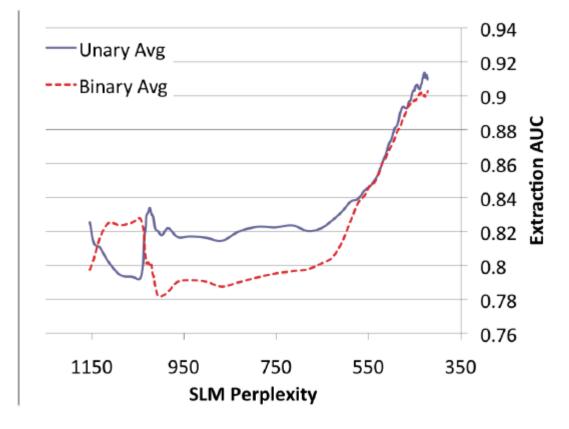
Correlation between LM and IE accuracy

Below: correlation coefficients

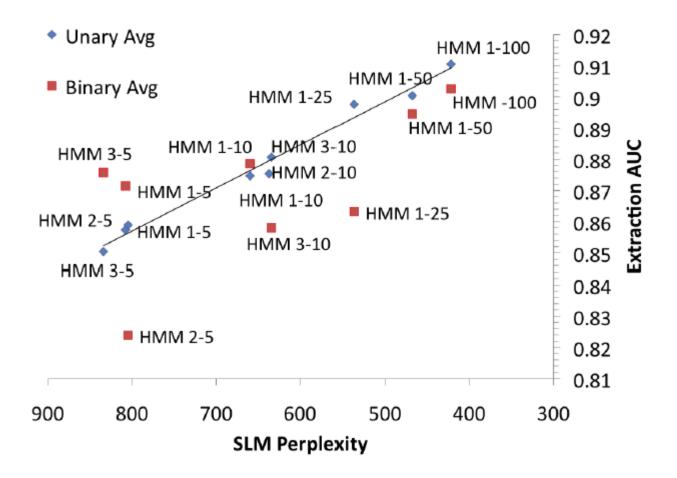
As LM error decreases, IE accuracy increases

LM	Unary	Binary	Wikipedia
HMM 1-5	911	361	994
HMM 2-5	856	.120	930
HMM 3-5	823	683	.922
HMM 1-10	916	967	905
HMM 2-10	877	797	963
HMM 3-10	957	669	924
HMM 1-25	933	850	959
HMM 1-50	942	942	947
HMM 1-100	896	877	942
N-Gram	512	999	-

Correlation between LM and IE accuracy



Correlation between LM and IE accuracy



- Better HMM language models => better information extraction
- Better HMM language models => ... => human-level AI?
 - Consider: a good enough LM could do question answering, pass the Turing Test, etc.
- There are lots of paths to human-level AI, but LMs have:
 - Well-defined progress
 - Ridiculous amounts of training data

- Today, people train language models by "taking what comes"
 - Larger corpora => better language models
- But corpus size limited by # of humans typing
 - What if we asked for the most informative sentences? (active learning)

 In HMMs, general Bayes Net algorithms have simple & efficient form

1. Evaluation

GIVEN a HMM M, and a sequence **x**,

FIND Prob[**x** | M]

Forward Algorithm and Backward Algorithm (Variable Elimination)

2. Decoding

GIVENa HMM M, and a sequence \mathbf{x} ,FINDthe sequence π of states that maximizes P[$\mathbf{x}, \pi \mid M$]Viterbi Algorithm (MAP query)

3. Learning

GIVEN A sequence **x**,

FIND HMM parameters $\theta = (e_i(.), a_{ij})$ that maximize P[**x** | θ] Baum-Welch/Forward-Backward algorithm (EM)

 Unsupervised Learning of HMMs can power more scalable, accurate unsupervised IE