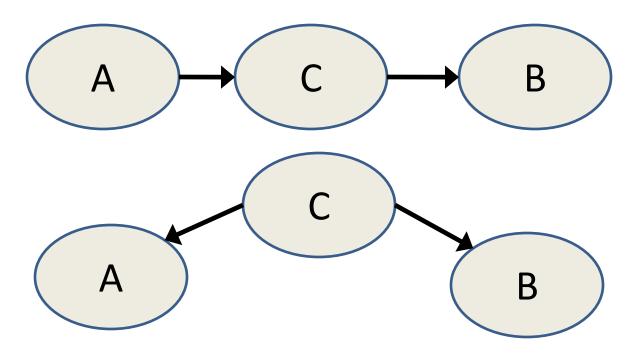
Markov Networks

Doug Downey
Northwestern EECS 395/495 Fall 2013

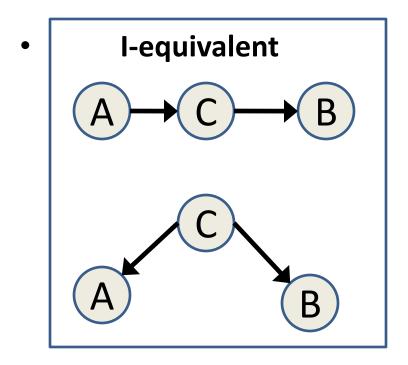
First: Perfect Maps and I-Equivalence

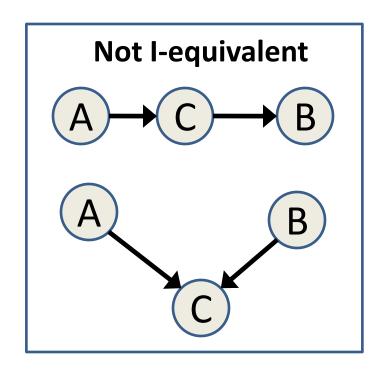
- **Perfect Map for S:** A graph for a set S of *independence* assertions, i.e. statements of the form $(X \perp Y \mid Z)$
- E.g., two Perfect Maps for $S = \{(A \perp B \mid C)\}$



I-Equivalence (1 of 2)

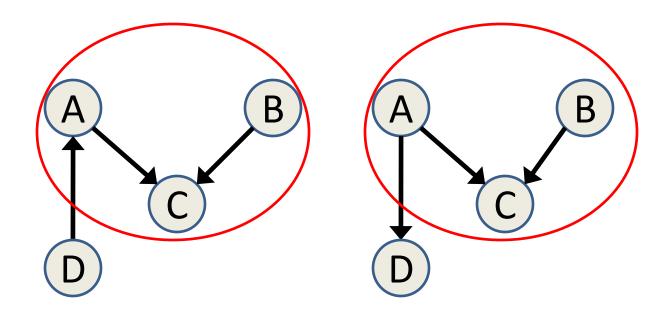
 Two graphs are *I-Equivalent* if they imply identical sets of independence assertions





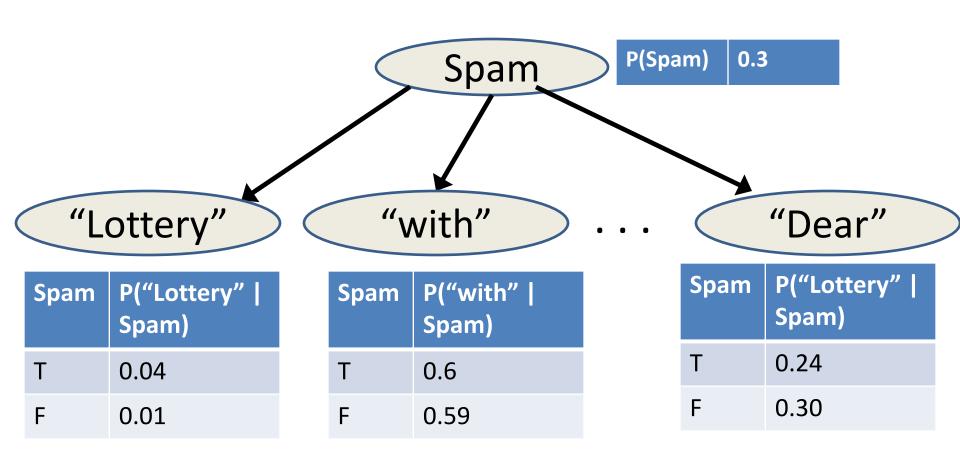
I-Equivalence (2 of 2)

- Two graphs are I-Equivalent iff they have the same
 - Skeleton: graph ignoring edge direction
 - Immoralities: v-structures without direct edge between parents



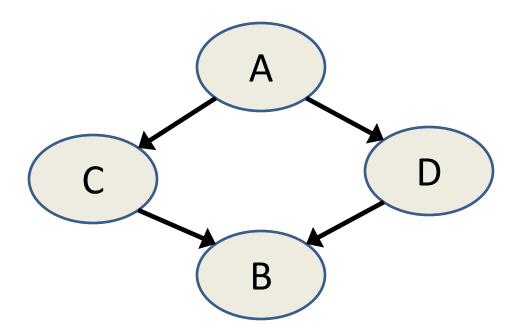
Sidenote: Naïve Bayes Net

NB assumes features conditionally indep. given the class:



Limitations of Bayesian Networks

Perfect Map for {(A ⊥ B | C, D), (C ⊥ D | A, B)}?

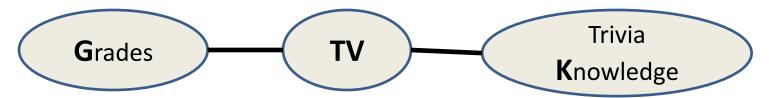


 Not possible! Bayes Nets can't express all possible sets of independence assertions.

Alternative: Markov Networks

- Undirected Graphical Model
 - No CPTs. Uses **potential functions** ϕ_c defined over cliques

•
$$P(\mathbf{x}) = \frac{\prod_{c} \phi_{c}(\mathbf{x}_{c})}{Z}$$
 $Z = \sum_{\mathbf{x}} \prod_{c} \phi_{c}(\mathbf{x}_{c})$

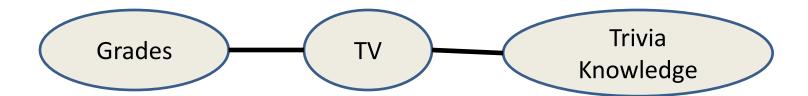


Grades	TV	$\phi_1(G,TV)$
Bad	None	2.0
Good	None	3.0
Bad	Lots	3.0
Good	Lots	1.0

TV	Trivia Knowledge	φ ₂ (TV, K)
None	Weak	2.0
Lots	Weak	1.0
None	Strong	1.5
Lots	Strong	3.0

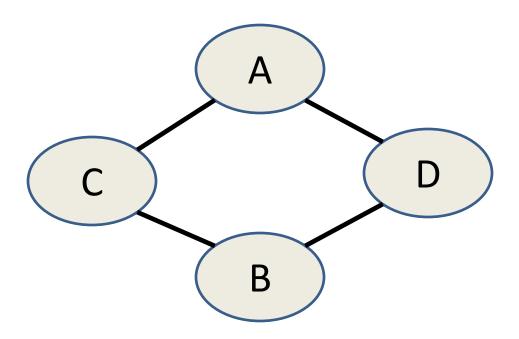
Markov Nets Independence Assertions

- Instead of D-separation, simply graph separation
 - So (Grades ⊥ Trivia Knowledge | TV)



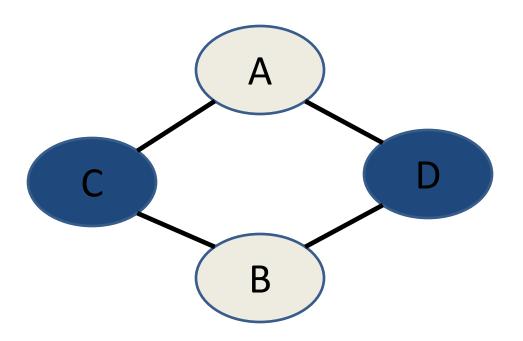
Expressivity of Markov Networks

Perfect Map for {(A ⊥ B | C, D), (C ⊥ D | A, B)}?



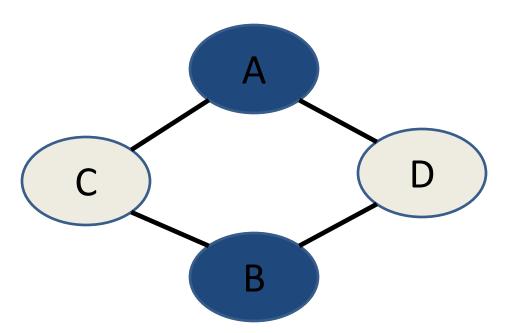
Expressivity of Markov Networks

Perfect Map for {(A ⊥ B | C, D), (C ⊥ D | A, B)}?



Expressivity of Markov Networks

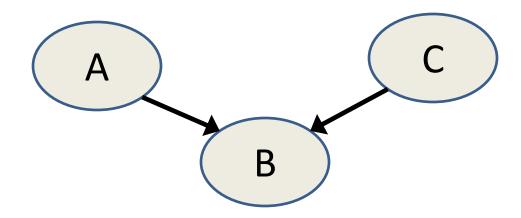
Perfect Map for {(A ⊥ B | C, D), (C ⊥ D | A, B)}?



Markov Nets can capture these independence assertions

But...

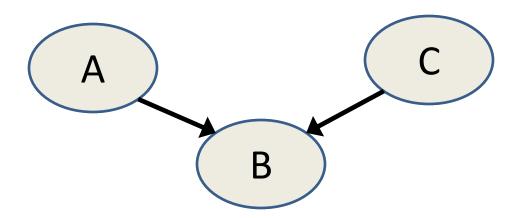
• How about $(A \perp C) \in S$, but $(A \perp C \mid B) \notin S$?



- Can't be captured perfectly in Markov Networks
- If graph separation -> conditional independence, new knowledge can only remove dependencies

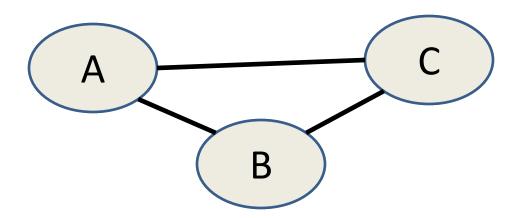
Bayesian Networks => Markov Networks

- Markov Nets can encode independences that Bayes Nets cannot, and vice-versa
- To convert from BN to MN, "moralize":



Bayesian Networks => Markov Networks

- Markov Nets can encode independences that Bayes Nets cannot, and vice-versa
- To convert from BN to MN, "moralize":



Markov Net Applications

- Best when no clear, directed causal structure
 - E.g. statistical physics, text, social networks, image analysis (e.g. segmentation, below)

Zoltan Kato http://www.inf.u-szeged.hu/ipcg/projects/RJMCMC.html