Bayes Net Learning

EECS 395/495 Fall 2013

Homework Remaining

- Homework \#3 to be assigned soon
- Homework \#4 will be about semi-supervised learning and expectation-maximization
- ...Homeworks \#3-\#4: the "how" of Graphical Models
- Then project(more on this soon)

Road Map

- Basics of Probability and Statistical Estimation
- Bayesian Networks
- Markov Networks
- Inference
- Learning
- Parameters, Structure, EM
- Semi-supervised Learning, HMMs

Today: Learning

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets

What is Learning?

- Given:
- target domain (set of random variables)
- E.g., disease diagnosis: symptoms, test results, diseases
- Expert knowledge
- MD's opinion on which diseases cause which symptoms
- Training examples from the domain
- Existing patient records
- Build a model that predicts future examples
- Use expert knowledge \& data to learn PGM structure and parameters

General Rules of Thumb in Learning

- The more training examples, the better
- The more (\sim correct) assumptions, the better
- Model structure (e.g., edges in Bayes Net)
- Feature selection
- Fewer irrelevant params => better

Optimizing on Training Set

- Cross-validation
- Partition data into k pieces (a.k.a. "folds")
- For each piece p
- train on all pieces but p, test on p
- Average the results
- Homework 3: 10-fold CV on training set
- How well will this predict test set performance?

Today: Learning

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs. Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Learning in Graphical Models

- Problem Dimensions
- Model
- Bayes Nets
- Markov Nets
- Structure
- Known
- Unknown (structure learning)
- Data
- Complete
- Incomplete (missing values or hidden variables)

Learning in Graphical Models

- Problem Dimensions (today)
- Model
- Bayes Nets
- Markov Nets
- Structure
- Known
- Unknown (structure learning)
- Data
- Complete
- Incomplete (missing values or hidden variables)

Learning in Bayes Nets - the upshot

- Just statistical estimation for each CPT

Training Data	
A	B
1	1
1	0
1	0
0	1
1	1
0	1
1	1

$$
\begin{aligned}
& A \\
& P_{M L}(A)=0.714 \\
& P_{M L}(B \mid A=1)=0.6
\end{aligned}
$$

Learning in Bayes Nets - details

- Problem statement (for today):
- Given a Bayes Network structure G, and a set of complete training examples $\left\{\boldsymbol{X}_{i}\right\}$
- Learn the CPTs for G.
- Assumption (as before in stat. estimation): Training examples are independent and identically distributed (i.i.d.) from an underlying distribution P^{*}
- Why just statistical estimation for each CPT?

Learning in Bayes Nets

- Thumbtack problem can be viewed as learning the CPT for a very simple Bayes Net:

$$
\begin{gathered}
X \text { heads/tails } \\
P(X=\text { heads })=\theta
\end{gathered}
$$

Learning as Inference

- Think of learning $\mathrm{P}\left(\Theta=\theta \mid\left\{X_{i}\right\}\right)$ as inference

Next Simplest Bayes Net

"heads"
"tails"

Next Simplest Bayes Net

Next Simplest Bayes Net

Next Simplest Bayes Net

Getting Tougher

heads/tails

Three probabilities to learn:

- $\theta_{X=\text { heads }}$
- $\theta_{Y=\text { heads } \mid X=\text { heads }}$
- $\theta_{Y=\text { heads } \mid X=\text { tails }}$

Learning as Inference

Parameter Independence

heads/tails

Three Separate Thumbtack Problems

Parameter Estimation in Bayes Nets

- Each CPT learned independently
- Easy when CPTs have convenient form
- Multinomials
- Maximum Likelihood = counting
- Gaussian, Poisson, etc.
- And priors are conjugate
- E.g. Beta for Binomials, etc.
- And data is complete

Parameter Priors

- MAP estimation

Training Data	
A	B
1	1
1	0
1	0
0	1
1	1
0	1
1	1

$$
\begin{gathered}
\text { A } \\
\mathrm{P}_{\mathrm{ML}}(B \mid A=0)=2 / 2=1.0 \\
\mathrm{P}_{\mathrm{MAP}}(B \mid A=0) \\
=(2+1) /(3+2)=0.6 \\
\text { "Laplace smoothing" } \\
\text {...same as } P\left(\Theta_{B \mid A=0}\right)=\operatorname{Beta}(2,2)
\end{gathered}
$$

Parameter Estimation in Bayes Nets

- Each CPT learned independently
- Easy when CPTs have convenient form
- Multinomials
- Maximum Likelihood = counting
- Gaussian, Poisson, etc.
- And priors are conjugate
- E.g. Beta for Binomials, etc.
- And data is complete

Incomplete Data

- Say we don't know X_{1} heads/tails

Incomplete Data in Practice

- Options:
- Just ignore it (for all examples)
- Replace missing Xi with most typical value in training set
- Sample Xi from P(Xi) in training set
- Let "unknown" be a value for Xi
- Try to infer missing values (special case: semisupervised learning)

Today: Learning

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs. Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Learning Continuous CPTs

- Options:
- Discretize
- Weka does this
- Not a bad option
- Use canonical functions
- Gaussians most popular
- see Matlab's package or WinMine, etc.

Continuous CPT Example

E.g., Linear Gaussian

$$
\mathbf{P}(X \mid \boldsymbol{u})=N\left(\beta_{0}+\beta_{1} u_{1}+\ldots \beta_{k} u_{k} ; \sigma^{2}\right)
$$

Linear Gaussian

ML solution from system of equations, e.g.:

$$
\boldsymbol{E}[X]=\beta_{0}+\beta_{1} \boldsymbol{E}\left[u_{1}\right]+\ldots \beta_{\mathrm{k}} \boldsymbol{E}\left[u_{\mathrm{k}}\right]
$$

Today: Learning

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs. Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Bias vs. Variance

- Efficacy of learning varies with Bayes Net structure and amount of training data

Bayes Net design impacts learning

- Data required to learn a CPT grows roughly linearly with number of parameters
- Fewer variables \& edges is better
- Including more informative variables and relationships improves accuracy
- More variables \& edges is better (?)
- => selection of variables and edges is the art of Bayes Net design

Overfitting in Bayes Nets

- $P(C \mid B)=$

	$P(C)$
$B=0$	$4 / 12$
$B=1$	$16 / 16$

- Using $P(C \mid A, B)=>$ zero training error (vs. 17\% error for P(C|B)), but cells have 12, 8, 4, 4 total samples

Training data is the following, repeated 4 times:

A	B	C
1	1	1
1	0	0
1	0	0
0	1	1
1	1	1
0	0	1
1	1	1

- => Very susceptible to random noise

Bias vs. Variance (1 of 3)

High Bias
Low Variance
Underfitting
Low Bias
High Variance
Overfitting

Bias vs. Variance (2 of 3)

High Bias
Low Variance
Underfitting

Low Bias High Variance
Overfitting

Bias vs. Variance (3 of 3)

- High bias sometimes okay
- E.g. Naïve Bayes effective in practice

How do you choose?

- Cross-validation
- And/or use heuristics for trading training accuracy for model complexity
- Useful in automated structure learning
- E.g., pick a structure and algorithmically refine
- Next week

Learning

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs. Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Discriminative vs. Generative training

- Say our graph G has variables $\boldsymbol{X}, \boldsymbol{Y}$
- Previous method learns $\mathrm{P}(\boldsymbol{X}, \boldsymbol{Y})$
- But often, the only inferences we care about are of form $P(\boldsymbol{Y} \mid \boldsymbol{X})$
$-\mathrm{P}($ Disease | Symptoms = e)
- P(StockMarketCrash | RecentPriceActivity = e)

Discriminative vs. Generative training

- Learning $\mathrm{P}(\boldsymbol{X}, \boldsymbol{Y})$: generative training
- Learned model can "generate" the full data $\boldsymbol{X}, \boldsymbol{Y}$
- Learning only $\mathrm{P}(\boldsymbol{Y} \mid \boldsymbol{X})$: discriminative training
- Model can't assign probs. to \boldsymbol{X} - only \boldsymbol{Y} given \boldsymbol{X}
- Idea: Only model what we care about
- Don't "waste data" on params irrelevant to task
- Side-step false independence assumptions in training (example to follow)

Generative Model Example

- Naïve Bayes model
$-Y$ binary \{1=spam, 0=not spam\} \boldsymbol{X} an n-vector: message has word (1) or not (0)
- Re-write P(Y|X) using Bayes Rule, apply Naïve Bayes assumption
$-2 n+1$ parameters, for n observed variables

Generative => Discriminative (1 of 3)

- But $P(Y \mid X)$ can be written more compactly

$$
\mathrm{P}(Y \mid X)=\frac{1}{1+\exp \left(w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}\right)}
$$

- Total of $n+1$ parameters w_{i}

Generative => Discriminative (2 of 3)

- One way to do conversion (vars binary):

$$
\exp \left(w_{0}\right)=\frac{P(Y=0) P\left(X_{1}=0 \mid Y=0\right) P\left(X_{2}=0 \mid Y=0\right) \ldots}{P(Y=1) P\left(X_{1}=0 \mid Y=1\right) P\left(X_{2}=0 \mid Y=1\right) \ldots}
$$

for $i>0$:

$$
\exp \left(w_{i}\right)=\frac{\mathrm{P}\left(X_{i}=0 \mid \mathrm{Y}=1\right) \mathrm{P}\left(X_{i}=1 \mid \mathrm{Y}=0\right)}{\mathrm{P}\left(X_{i}=0 \mid \mathrm{Y}=0\right) \mathrm{P}\left(X_{i}=1 \mid \mathrm{Y}=1\right)}
$$

Generative => Discriminative (3 of 3)

- We reduced $2 n+1$ parameters to $n+1$
- Bias vs. Variance arguments says this must be better, right?
- Not exactly. If we construct $P(Y \mid X)$ to be equivalent to Naïve Bayes (as before)
- then it's...equivalent to Naïve Bayes
- Idea: optimize the $n+1$ parameters directly, using training data

Discriminative Training

- In our example:

$$
P(Y \mid X)=\frac{1}{1+\exp \left(w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}\right)}
$$

- Goal: find w_{i} that maximize likelihood of training data Y s given training data X s
- Known as "logistic regression"
- Solved with gradient ascent techniques
- A convex (actually concave) optimization problem

Naïve Bayes vs. LR

- Naïve Bayes "trusts its assumptions" in training
- Logistic Regression doesn't - recovers better when assumptions violated

NB vs. LR: Example

Training Data

SPAM	Lottery	Winner	Lunch	Noon
1	1	1	0	0
1	1	1	1	1
0	0	0	1	1
0	1	1	0	1

- Naïve Bayes will classify the last example incorrectly, even after training on it!
- Whereas Logistic Regression is perfect with e.g., $w_{0}=0.1$
$w_{\text {lottery }}=w_{\text {winner }}=w_{\text {lunch }}=-0.2$
$w_{\text {noon }}=0.4$

Logistic Regression in practice

- Can be employed for any numeric variables X_{i}
- or for other variable types, by converting to numeric (e.g. indicator) functions
- "Regularization" plays the role of priors in Naïve Bayes
- Optimization tractable, but (way) more expensive than counting (as in Naïve Bayes)

Discriminative Training

- Naïve Bayes vs. Logistic Regression one illustrative case
- Applicable more broadly, whenever queries $\mathrm{P}(\boldsymbol{Y} \mid \boldsymbol{X})$ known a priori

Learning

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs. Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Recall: Markov Networks

- Undirected Graphical Model
- Potential functions ϕ_{c} defined over cliques
- $P(\boldsymbol{x})=\frac{\prod_{c} \phi_{c}\left(\boldsymbol{x}_{c}\right)}{Z}$

$$
\mathrm{Z}=\Sigma_{x} \Pi_{c} \phi_{c}\left(\boldsymbol{x}_{c}\right)
$$

Grades	
	TV
	$\phi_{1}(\mathrm{G}, \mathrm{TV})$
	Little
Little	2.0
Lots	3.0
Lots	3.0

TV	Trivia Knowledge	ϕ_{2} (TV, TK)
Little	Little	2.0
Lots	Little	1.0
Little	Lots	1.5
Lots	Lots	3.0

Log-linear Formulation (1 of 2)

- $P(\boldsymbol{x})=\frac{\exp \left(\Sigma_{i} w_{i} f_{i}\left(\boldsymbol{D}_{i}\right)\right)}{Z}$
- Example, write $\phi_{1}(\mathrm{G}, \mathrm{TV})$ as $\exp \left(w_{1} f_{1}(\mathrm{G}, \mathrm{TV})+\ldots+w_{4} f_{4}(\mathrm{G}, \mathrm{TV})\right)$
$w_{1}=\ln 2.0 w_{2}=\ln 3.0 w_{3}=\ln 3.0 w_{4}=\ln 1.0$

Grades	TV	$\phi_{1}(\mathrm{G}, \mathrm{TV})$	$f_{1}(\mathrm{G}, \mathrm{TV})$	$f_{2}(\mathrm{G}, \mathrm{TV})$	$f_{3}(\mathrm{G}, \mathrm{TV})$	$f_{4}(\mathrm{G}, \mathrm{TV})$
Low	Little	2.0	1	0	0	0
Good	Little	3.0	0	1	0	0
Low	Lots	3.0	0	0	1	0
Good	Lots	1.0	0	0	0	1

Log-linear Formulation (2 of 2)

- $P(\boldsymbol{x})=\frac{\exp \left(\Sigma_{i} w_{i} f_{i}\left(\boldsymbol{D}_{i}\right)\right)}{Z}$
- Why?
- "Feature" f_{i} can be simpler than full potentials
- Learning easy to express

Learning in Markov Networks

- Harder than in Bayes Nets
- Why? In Bayes Nets, likelihood is:
$-\mathrm{P}($ Data $\mid \boldsymbol{\theta})=\Pi_{m \in \text { Data }} \Pi_{\mathrm{i}} \mathrm{P}\left(X_{i}[m] \mid \operatorname{Parents}\left(X_{i}\right)[m]: \boldsymbol{\theta}_{i}\right)$ where $X_{i}[\mathrm{~m}]$ is the assignment to X_{i} in example m

$$
=\Pi_{i} \Pi_{m \in \operatorname{Data}} \mathrm{P}\left(X_{i}[m] \mid \operatorname{Parents}\left(X_{i}\right)[m]: \theta_{i}\right)
$$

- Assuming param independence, maximize global likelihood by maximizing each CPT likelihood $\Pi_{m \in \operatorname{Data}} \mathrm{P}\left(X_{i}[m] \mid \operatorname{Parents}\left(X_{i}\right)[m]: \theta_{i}\right) \quad$ independently

Learning in Markov Networks

- Harder than in Bayes Nets
- In Markov Net,

Likelihood =

$$
\mathrm{P}(\text { Data } \mid \mathbf{w})=\Pi_{m \in \text { Data }} \frac{\exp \left(\sum_{i} w_{i} f_{i}\left(D_{i}[\mathrm{~m}]\right)\right)}{\mathrm{Z}_{\mathbf{w}}}
$$

- But $Z_{w}=\sum_{\boldsymbol{x} \in \operatorname{Val}(\boldsymbol{x})} \exp \left(\Sigma_{i} w_{j} f_{i}(\boldsymbol{x})\right)$
- Sum over exps involving all w_{i}
- Can't decompose as we did in Bayes Net case

So what do we do?

- Maximize likelihood using Gradient Ascent
- Or 2nd order optimization
- $\partial / \partial w_{i} \ln \mathrm{P}($ Data $\mid \mathbf{w})=E_{\text {Data }}\left[f_{i}\left(\boldsymbol{D}_{i}\right)\right]-E_{\mathrm{w}}\left[f_{i}\left(\boldsymbol{D}_{i}\right)\right]$
- Concave (no local maxima)
- Requires inference at each step
- Slow

Approximation: Pseudo-likelihood

- Pseudo-likelihood PL(Data| $\boldsymbol{\theta})=$
$\Pi_{m \in \operatorname{Data}} \Pi_{\mathrm{i}} \mathrm{P}\left(X_{i}[m] \mid\right.$ Neighbors $\left.\left(X_{i}\right)[m]: \theta_{i}\right)$
- Assume variables depend only on values of neighbors in data
- No more Z!
- Easier to compute/optimize (decomposes)
- But not necessarily a great approximation
- Equal to likelihood in limit of infinite training data

Discriminative Training

- Learn $P(\boldsymbol{Y} \mid \boldsymbol{X})$
- $\left.\partial / \partial w_{i} \ln P\left(\boldsymbol{Y}_{\text {Data }} \mid \boldsymbol{X}_{\text {Data }}, \mathbf{w}\right)=\sum_{m}\left(f_{i}(\boldsymbol{y}[\mathrm{~m}], \boldsymbol{x}[\mathrm{m}])\right]-\boldsymbol{E}_{\boldsymbol{w}}\left[f_{i} \mid x[\mathrm{~m}]\right]\right)$
- Rightmost term: run inference for each value $\boldsymbol{x}[m]$ in data

What have we learned?

- General Rules of Thumb in Learning
- Learning in Graphical Models
- Parameters in Bayes Nets
- Briefly: Continuous conditional distributions in Bayes Nets
- Bias vs. Variance
- Discriminative vs. Generative training
- Parameters in Markov Nets

Rest of course

- Next:
- Structure Learning
- After that:
- learning with missing data (semi-supervised learning), HMMs

