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Markov Network Inference
* P(x)=1I. ¢(x Z=2 11 ¢.(x)
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Markov Network Inference

* P(Grades | TV=Little)? Straightforward: enumerate,
then re-normalize
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But...

 P(Grades)? Tougher.

Trivia
Knowledge

* Need to compute Z, requires summing over Trivia
Knowledge as well. Compare with Bayes Net:

Trivia
Knowledge




Inference in Markov Networks

* |[n general, we need to sum over the whole
network

A method for doing so is the junction-tree
algorithm

— As a side effect, it computes all the marginals

* P(Grades), P(TV), P(Trivia Knowledge)
* Key: can also compute these given evidence

— We often want to do this for Bayes Nets too

* Suggests a strategy: convert to Markov
Network, then run junction tree algorithm



Junction Tree Algorithm

* High-level Intuition: Computing marginals is
straightforward in a tree structure

* Consider a directed Bayes Net for example:
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Junction Tree

* Inference of marginals is straightforward in a
tree

— Even if undirected, as we’ll see

* Basicidea:
— If Bayes Net, convert to Markov Net

— Convert Markov Net into a tree structure

e How?
Triangulate, Build Cligue Graph, Build Junction Tree

— Do Inference on Junction Tree



Convert to Markov Net

* Consider this Bayes Net conversion:
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e What are the factors of the Markov Net?



Junction Tree Outline

* |f Bayes Net, convert to Markov Net
 Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree



Convert Markov Net into Junction
Tree

. Punchﬁne
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e Details follow



Junction Tree Outline

* |f Bayes Net, convert to Markov Net

e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree



Triangulation => “Chordal” Graph

* Goal: Every cycle of length > 3 has a chord
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« Why? Stay tuned.




Triangulation Algorithm

Repeat while there exists a cycle of length > 3 with no chord:
Add a chord (edge between two non-adjacent
vertices in such a cycle).

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Triangulation Checking (1 of 3)

It appears to be triangulated, but how can we be sure

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Triangulation Checking (2 of 3)

Input: Graph G with n nodes
Output: “Is G triangulated?”
Algorithm:
Choose any node, label it 1
fori=2ton
Find node with most labeled neighbors, label it/
if / has two non-adjacent labeled neighbors
return false
return true



Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

o—

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure
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Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure
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Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Triangulation Checking (3 of 3)

No edge between nodes 5 and 6, both of which are parents of
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From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Connect the two offending nodes
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Repeat Until Triangulation Check
Succeeds

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Junction Tree Outline

 |f Bayes Net, convert to Markov Net
e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree



Building Clique Graph H

* Create a node in H for each maximal clique in G
* Create edges in H between adjacent cliques in G

— Convenience: Label edges in H with nodes’ intersection
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Bigger Example

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Bigger Example — Cligue Graph

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Junction Tree Outline

 |f Bayes Net, convert to Markov Net
e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree



Build Junction Tree

* Alunction Tree is a subgraph of the clique
graph that
— |Is a tree
— Contains all the nodes of the clique graph

— Satisfies the junction tree property

* For each pair of cliques U, V with intersection S, all
cliques on path between U and V contain S



Junction Tree Example

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Choose a Root
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Remember This?

* Goal: Every cycle of length > 3 has a chord

Why? Stay tuned.




Can we always find a Junction Tree?

* Yes, for clique graphs of triangulated graphs
* Define “edge weight” on the clique graph to
be the size of the intersection

— Then a maximum-weight spanning tree is a
junction tree



Junction Tree

 |f Bayes Net, convert to Markov Net
* Convert Markov Net into Tree

— Triangulate
— Build Cligue Graph
— Build Junction Tree

Do Inference on Tree



Inference

* Initialize cligue nodes

— Cligue node in H is a table assigning
values to its variable combinations

— Put each potential function (or CPT)
in G into exactly one node in H

— Combine by multiplying “pointwise”
(as in variable elimination)




Example
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Junction Tree with CPTs
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*  From David Pége, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Junction Tree Algorithm

* |[ncorporate Evidence -- For each £ =¢
— Find one junction tree node containing E
— Zero out all cells with E# e

 Upward Pass (from leaves to root)

— Each leaf sends message to parent

* Message = leaf’s table after summing out variables not
In parent

— Parent propagates message

* Multiplies in the child’s message, then repeats process



Junction Tree Algorithm

e Downward Pass

— Root sends child a message
 Divides its table by child’s message from upward pass
e Sums out variables not in child, and sends

— Child propagates the message

* After multiplying in parent’s message, child’s table is
the joint distribution over its variables

* Child continues the process (acts as root)



Upward Pass —assume no evidence
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Status After Upward Pass

P(AB,C)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt




Downward Pass
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* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Status After Downward Pass

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt



Remember Junction Tree Property

* Alunction Tree is a subgraph of the clique
graph that
— |s a tree
— Co

— Satisfies the junction tree property

* For each pair of cliques U, V with intersection S, all
cliques on path between U and V contain S

aifthe nodes of the cliqu




Why a Tree?

* Consider the alternative — cycles:

C
[A, B’CHC'D'EJ

| B,C | D,E

D
[B,C,D D, E, F,G]

* Previous algorithm not applicable -- can’t
define upward, downward pass




Finishing touches

 We have joint distributions
— P(A, B, C), P(C, D, E), etc.
 Compute marginals by summing out

— Key: These sums are over small #s of variables

* |f evidence changes, we repeat forward-
backward pass

— BUT we don’t have to re-compute the junction
tree (= savings)



