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Markov Network Inference 

• P(x) = c c(xc)  Z = x c c(xc)  
          Z 

 

 

 

Grades Trivia 
Knowledge 

TV 

Grades TV (A, B) 

Low Little 2.0 

Good Little 3.0 

Low Lots 3.0 

Good Lots 1.0 

TV Trivia 
Knowledge 

(A, B) 

Little Little 2.0 

Lots Little 1.0 

Little Lots 1.5 

Lots Lots 3.0 



Markov Network Inference 

• P(Grades | TV=Little)?  Straightforward: enumerate, 
then re-normalize 
          Z 

 

 

 

Grades Trivia 
Knowledge 

TV 

Grades TV (A, B) 

Low Little 2.0 

Good Little 3.0 

Low Lots 3.0 

Good Lots 1.0 

TV Trivia 
Knowledge 

(A, B) 

Little Little 2.0 

Lots Little 1.0 

Little Lots 1.5 

Lots Lots 3.0 



But… 

• P(Grades)?  Tougher. 

 

 

 

 

• Need to compute Z, requires summing over Trivia 
Knowledge as well.  Compare with Bayes Net: 

Grades Trivia 
Knowledge 

TV 

Grades 
Trivia 

Knowledge 

TV 



Inference in Markov Networks 

• In general, we need to sum over the whole 
network 

• A method for doing so is the junction-tree 
algorithm 
– As a side effect, it computes all the marginals 

• P(Grades), P(TV), P(Trivia Knowledge) 

• Key: can also compute these given evidence 

– We often want to do this for Bayes Nets too 

• Suggests a strategy: convert to Markov 
Network, then run junction tree algorithm 

 
 

 



Junction Tree Algorithm 

• High-level Intuition: Computing marginals is 
straightforward in a tree structure 

• Consider a directed Bayes Net for example: 

 

B D 

A 

C 

E 



Junction Tree 

• Inference of marginals is straightforward in a 
tree 

– Even if undirected, as we’ll see 

• Basic idea: 

– If Bayes Net, convert to Markov Net 

– Convert Markov Net into a tree structure  

• How?   
Triangulate, Build Clique Graph, Build Junction Tree 

– Do Inference on Junction Tree 



Convert to Markov Net 

• Consider this Bayes Net conversion: 

 

 

 

 

• What are the factors of the Markov Net? 

B C 

D 

A 

B C 

D 

A 



Junction Tree Outline 

• If Bayes Net, convert to Markov Net 

• Convert Markov Net into Junction Tree 

– Triangulate 

– Build Clique Graph 

– Build Junction Tree 

• Do Inference using Junction Tree 



Convert Markov Net into Junction 
Tree 

• Punchline: 

 

 

 

 

 

• Details follow 

 

 

 

B C 

D 
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B C 
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B,C 

A, B, C 

B, C, D 



Junction Tree Outline 

• If Bayes Net, convert to Markov Net 

• Convert Markov Net into Junction Tree 

– Triangulate 

– Build Clique Graph 

– Build Junction Tree 

• Do Inference using Junction Tree 



Triangulation => “Chordal” Graph 

• Goal: Every cycle of length > 3 has a chord 

 

 

 

 

 

• Why?  Stay tuned. 

B C 

D 

A 

B C 

D 

A 

E E 



Repeat while there exists a cycle of length > 3 with no chord:     
Add a chord (edge between two non-adjacent
vertices in such a cycle).

Triangulation Algorithm 

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  



 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

 

Triangulation Checking (1 of 3) 
It appears to be triangulated, but how can we be sure?



Input: Graph G with n nodes 

Output: “Is G triangulated?” 

Algorithm: 

 Choose any node, label it 1 

    for i = 2 to n 

     Find node with most labeled neighbors, label it i 

        if i has two non-adjacent labeled neighbors 

            return false 

    return true 

Triangulation Checking (2 of 3) 



It appears to be triangulated, but how can we be sure?

1

Triangulation Checking (3 of 3) 
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It appears to be triangulated, but how can we be sure?

1 2

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

Triangulation Checking (3 of 3) 



It appears to be triangulated, but how can we be sure?

1 2

3

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

Triangulation Checking (3 of 3) 



It appears to be triangulated, but how can we be sure?

1 2

3 4

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

Triangulation Checking (3 of 3) 



It appears to be triangulated, but how can we be sure?

1 2

3 4
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Triangulation Checking (3 of 3) 



It appears to be triangulated, but how can we be sure?

1 2

3 4

5

6

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

Triangulation Checking (3 of 3) 



No edge between nodes 5 and 6, both of which are parents of 7.
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Triangulation Checking (3 of 3) 



1 2

3 4

5

6

7

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

Connect the two offending nodes 



 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

Repeat Until Triangulation Check 
Succeeds 

1 2

3 4

5

6

7

8

9

10
11

12



Junction Tree Outline 

• If Bayes Net, convert to Markov Net 

• Convert Markov Net into Junction Tree 

– Triangulate 

– Build Clique Graph 

– Build Junction Tree 

• Do Inference using Junction Tree 



Building Clique Graph H 

• Create a node in H for each maximal clique in G 

• Create edges in H between adjacent cliques in G 
– Convenience: Label edges in H with nodes’ intersection 
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G H 

A, B, C 

B, C, D 



Bigger Example 

1 2

3 4
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C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3 3,4,5

5

4,5

4,5,6

5,7
9,10

9

5,7,9

5,7

6
6

8

5,6,7

6,8

5,7,8

The label of an edge between two cliques is called the separator.

5,6

5
5

5,7

5
5

Bigger Example – Clique Graph 
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Junction Tree Outline 

• If Bayes Net, convert to Markov Net 

• Convert Markov Net into Junction Tree 

– Triangulate 

– Build Clique Graph 

– Build Junction Tree 

• Do Inference using Junction Tree 



Build Junction Tree 

• A Junction Tree is a subgraph of the clique 
graph that  

– Is a tree 

– Contains all the nodes of the clique graph 

– Satisfies the junction tree property 

• For each pair of cliques U, V with intersection S, all 
cliques on path between U and V contain S 



Junction Tree Example 

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3,4,5

4,5,6

9,10
5,7,9

5,6,7

6,8

5,7,8
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Choose a Root 

 

C7
5,7,9,10

C4
4,5,6,7

C8
9,10,11

C6
5,7,8,9

C1
1,2,3

C2
2,3,4,5

C3
3,4,5,6

3,4,5

2,3

C9
6,8,12

C5
5,6,7,8

6,8

5,6,7
5,7,8

4,5,6
5,7,9

9,10



Remember This? 

• Goal: Every cycle of length > 3 has a chord 

 

 

 

 

 

• Why?  Stay tuned. 

B C 

D 

A 

B C 

D 

A 

E E 



Can we always find a Junction Tree? 

• Yes, for clique graphs of triangulated graphs 

• Define “edge weight” on the clique graph to 
be the size of the intersection 

– Then a maximum-weight spanning tree is a 
junction tree 
[Jensen & Jensen, 1994] 



Junction Tree 

• If Bayes Net, convert to Markov Net 

• Convert Markov Net into Tree 

– Triangulate 

– Build Clique Graph 

– Build Junction Tree 

• Do Inference on Tree 



Inference 

• Initialize clique nodes 

– Clique node in H is a table assigning 
values to its variable combinations 

– Put each potential function (or CPT) 
in G into exactly one node in H 

– Combine by multiplying “pointwise” 
(as in variable elimination) 

B C 

D 

A 
G 

B,C 

A, B, C 

B, C, D 

H 



Example 

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

A

D E

F

CB

.1 .9

.9

.9

.1

.1

.7

.3 .8

.2

.7 .3

.4 .6

.5 .5

.4 .6

.1 .5

.5.9 .6 .2

.4 .8

a

a

a

a
b A|

b A|

a a
c A|

 c A|

d B|d B|

b

b

e C|  e C|
c

c

d
e e ee

d

f D E| ,

 f D E| ,



Junction Tree with CPTs 

DEFBCD
.7 .3

.6.4

.5 .5

.4 .6

.1 .5

.5.9 .6 .2

.4 .8
ABC

CDE

.007.003

.648.162 .018.072

.063.027

CD DE

BC

a
a

d B|d B|

b

b

e C|  e C|

c
c

d
e e ee

d

f D E| ,

 f D E| ,
b b

cc cc

P( )A,B,C

P( )E C|

P( )D B|

P( )F D E| ,
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Junction Tree Algorithm 

• Incorporate Evidence -- For each E = e 

– Find one junction tree node containing E 

– Zero out all cells with E  e 

• Upward Pass  (from leaves to root) 

– Each leaf sends message to parent 

• Message = leaf’s table after summing out variables not 
in parent 

– Parent propagates message 

• Multiplies in the child’s message, then repeats process 



Junction Tree Algorithm 

• Downward Pass 

– Root sends child a message  

• Divides its table by child’s message from upward pass 

• Sums out variables not in child, and sends 

– Child propagates the message 

• After multiplying in parent’s message, child’s table is 
the joint distribution over its variables 

• Child continues the process (acts as root) 

 

 



Upward Pass – assume no evidence 

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

.081.099

.651.169

1.0 1.0

1.0 1.0

DEFBCD

ABC

CDE

CD DE

BC

.330

.124.126

.420

dd

c
c

|e | e
|d

|d

b

b

c c
P( )B,C

P( D,E)|

P( )C D,



 f D E| ,

f D E| ,

Status After Upward Pass 
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.1 .5

.5.9 .6 .2

.4 .8

.007.003

.648.162 .018.072

.063.027

DEFBCD

ABC

CDE

CD DE

BC

.068.101

.024.057 .069.030

.260.391

.062.062

.198.132 .168.252

.063.063

b

c
d

e e

P( )A,B,C

P( )C D E, ,P( )B C D, ,

P( )F D E| ,

e

d
c

e

dd
c

c

d d

a
a

b b
cc cc

d
e e ee

d



Downward Pass 

 

 

 

 

 

 

 

 

• From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt  

.194.260

.231.315

DEFBCD

ABC

CDE

CD DE

BC

1.0 1.0

Will have no
effect - ignore

dd
e

e

c c .194  .231 
.260  .315 



Status After Downward Pass 
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.019.130

.130.175 .139.063

.092.252

.007.003

.648.162 .018.072

.063.027

DEFBCD

ABC

CDE

CD DE

BC

.068.101

.024.057 .069.030

.260.391

.062.062

.198.132 .168.252

.063.063

b

b

c
d

e e

P( )A,B,C

P( )C D E, ,P( )B C D, ,

P( , )D E,F

e

d
c

e

dd
c

c

d d

d d
ee e e

f

 f
b b

c cc c
a

a



Remember Junction Tree Property 

• A Junction Tree is a subgraph of the clique 
graph that  

– Is a tree 

– Contains all the nodes of the clique graph 

– Satisfies the junction tree property 

• For each pair of cliques U, V with intersection S, all 
cliques on path between U and V contain S 



Why a Tree? 

• Consider the alternative – cycles: 

 

 

 

 

 

• Previous algorithm not applicable -- can’t 
define upward, downward pass 

B,C 

A, B, C 

B, C, D 

D,E 

C, D, E 

D, E, F,G 

C 

D 



Finishing touches 

• We have joint distributions 

– P(A, B, C), P(C, D, E), etc. 

• Compute marginals by summing out 

– Key: These sums are over small #s of variables 

• If evidence changes, we repeat forward-
backward pass 

– BUT we don’t have to re-compute the junction 
tree (= savings) 


