Inference in Markov Networks

Doug Downey
Northwestern EECS 395/495 Fall 2011

Markov Network Inference
* P(x)=1I. ¢(x Z=2 11 ¢.(x)

Trivia
Knowledge

m— o Trivia #A, B)
Little Knowledge

Good Little 3.0 Little Little
Low Lots 3.0 Lots Little 1.0
Good Lots 1.0 Little Lots 1.5

Lots Lots 3.0

Markov Network Inference

* P(Grades | TV=Little)? Straightforward: enumerate,
then re-normalize

Trivia
Knowledge
Trivia @A, B)
Knowledge

m—

Little
Good Little 3.0 Little Little
Low Lots 3.0 Lots Little 1.0
Good Lots 1.0 Little Lots 1.5

Lots Lots 3.0

But...

 P(Grades)? Tougher.

Trivia
Knowledge

* Need to compute Z, requires summing over Trivia
Knowledge as well. Compare with Bayes Net:

Trivia
Knowledge

Inference in Markov Networks

* |[n general, we need to sum over the whole
network

A method for doing so is the junction-tree
algorithm

— As a side effect, it computes all the marginals

* P(Grades), P(TV), P(Trivia Knowledge)
* Key: can also compute these given evidence

— We often want to do this for Bayes Nets too

* Suggests a strategy: convert to Markov
Network, then run junction tree algorithm

Junction Tree Algorithm

* High-level Intuition: Computing marginals is
straightforward in a tree structure

* Consider a directed Bayes Net for example:

(20
e > s
e > —

Junction Tree

* Inference of marginals is straightforward in a
tree

— Even if undirected, as we’ll see

* Basicidea:
— If Bayes Net, convert to Markov Net

— Convert Markov Net into a tree structure

e How?
Triangulate, Build Cligue Graph, Build Junction Tree

— Do Inference on Junction Tree

Convert to Markov Net

* Consider this Bayes Net conversion:

Giﬁ Gé@

e What are the factors of the Markov Net?

Junction Tree Outline

* |f Bayes Net, convert to Markov Net
 Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Convert Markov Net into Junction
Tree

. Punchﬁne

G’G

@t@

o i

e Details follow

Junction Tree Outline

* |f Bayes Net, convert to Markov Net

e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Triangulation => “Chordal” Graph

* Goal: Every cycle of length > 3 has a chord

O O
< <
B—O "™ B)—C
o0 Nolor

« Why? Stay tuned.

Triangulation Algorithm

Repeat while there exists a cycle of length > 3 with no chord:
Add a chord (edge between two non-adjacent
vertices in such a cycle).

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (1 of 3)

It appears to be triangulated, but how can we be sure

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (2 of 3)

Input: Graph G with n nodes
Output: “Is G triangulated?”
Algorithm:
Choose any node, label it 1
fori=2ton
Find node with most labeled neighbors, label it/
if / has two non-adjacent labeled neighbors
return false
return true

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

o—

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

6——@>

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

6——@>

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

6——@>

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

‘._ 2 S

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure

‘._ 2 S

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

No edge between nodes 5 and 6, both of which are parents of

6_2 S

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Connect the two offending nodes

&_ 2 S

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Repeat Until Triangulation Check
Succeeds

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Outline

 |f Bayes Net, convert to Markov Net
e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Building Clique Graph H

* Create a node in H for each maximal clique in G
* Create edges in H between adjacent cliques in G

— Convenience: Label edges in H with nodes’ intersection

G H

(A [A,B,CJ
L P

B—0o =

o' [eco

B,C

Bigger Example

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Bigger Example — Cligue Graph

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Outline

 |f Bayes Net, convert to Markov Net
e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Build Junction Tree

* Alunction Tree is a subgraph of the clique
graph that
— |Is a tree
— Contains all the nodes of the clique graph

— Satisfies the junction tree property

* For each pair of cliques U, V with intersection S, all
cliques on path between U and V contain S

Junction Tree Example

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Choose a Root

7,8

5,6,7

5,79

10

9,10

C5

\ 5,6,7,8
6,8
C9
6,8,12

17 19

C8
9,10,1

Remember This?

* Goal: Every cycle of length > 3 has a chord

Why? Stay tuned.

Can we always find a Junction Tree?

* Yes, for clique graphs of triangulated graphs
* Define “edge weight” on the clique graph to
be the size of the intersection

— Then a maximum-weight spanning tree is a
junction tree

Junction Tree

 |f Bayes Net, convert to Markov Net
* Convert Markov Net into Tree

— Triangulate
— Build Cligue Graph
— Build Junction Tree

Do Inference on Tree

Inference

* Initialize cligue nodes

— Cligue node in H is a table assigning
values to its variable combinations

— Put each potential function (or CPT)
in G into exactly one node in H

— Combine by multiplying “pointwise”
(as in variable elimination)

Example

11.9 A a —a
a —a
b|Al.1].9 <N

1. —~C|A|l .3 | .8
-b|A| 9|1 E] e|lC—-¢|C

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree with CPTs

e|C —¢|C
c12 L5 | p(E|C)

bd_4BﬂdB N
—=1 (BCD) .DEF

* From David Pége, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Algorithm

* |[ncorporate Evidence -- For each £ =¢
— Find one junction tree node containing E
— Zero out all cells with E# e

 Upward Pass (from leaves to root)

— Each leaf sends message to parent

* Message = leaf’s table after summing out variables not
In parent

— Parent propagates message

* Multiplies in the child’s message, then repeats process

Junction Tree Algorithm

e Downward Pass

— Root sends child a message
 Divides its table by child’s message from upward pass
e Sums out variables not in child, and sends

— Child propagates the message

* After multiplying in parent’s message, child’s table is
the joint distribution over its variables

* Child continues the process (acts as root)

Upward Pass —assume no evidence

P(C, D)
12412
ﬂcciﬁ‘ﬁ A ,\Iﬂd 1.0[1.0
CD D
CD

P(B,C)

b
-b

P(D,E)
d —d Ie |—-e

|d| 1.0] 1.0

C =C
.169.65

.081,.099

(BCD

(ABC)

(DEF)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Status After Upward Pass

P(AB,C)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Downward Pass

d —d
C —C CDE €1.194|.231
1.011.0 —e].260|.315
Will have no ‘//CD DE\\I
effect - ignore (BCD) (DEF)
l BC
(ABC)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Status After Downward Pass

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Remember Junction Tree Property

* Alunction Tree is a subgraph of the clique
graph that
— |s a tree
— Co

— Satisfies the junction tree property

* For each pair of cliques U, V with intersection S, all
cliques on path between U and V contain S

aifthe nodes of the cliqu

Why a Tree?

* Consider the alternative — cycles:

C
[A, B’CHC'D'EJ

| B,C | D,E

D
[B,C,D D, E, F,G]

* Previous algorithm not applicable -- can’t
define upward, downward pass

Finishing touches

 We have joint distributions
— P(A, B, C), P(C, D, E), etc.
 Compute marginals by summing out

— Key: These sums are over small #s of variables

* |f evidence changes, we repeat forward-
backward pass

— BUT we don’t have to re-compute the junction
tree (= savings)

