Learning in Graphical Models

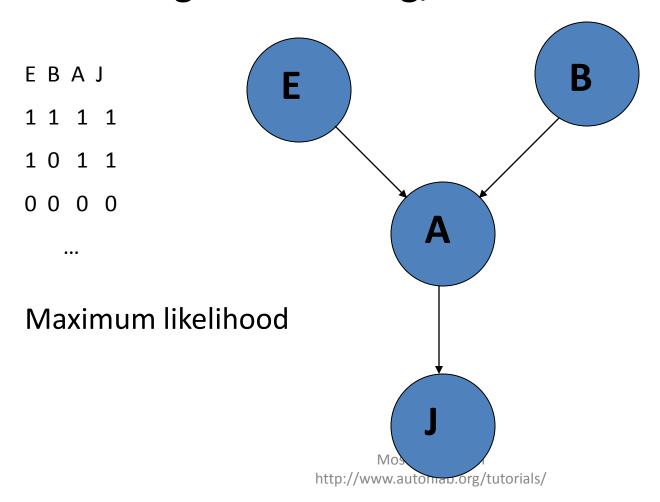
- Problem Dimensions
 - Model
 - Bayes Nets
 - Markov Nets
 - Structure
 - Known
 - Unknown (structure learning)
 - Data
 - Complete
 - Incomplete (missing values or hidden variables)

Outline

- Objective
- Simple example
- Complex example

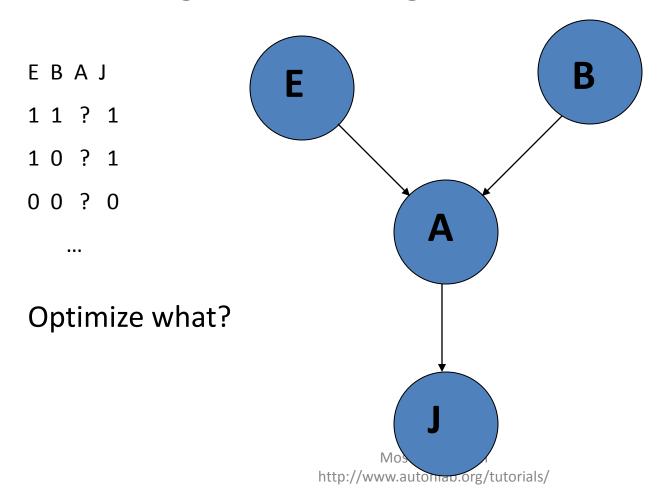
Objective

Learning with missing/unobservable data



Objective

Learning with missing/unobservable data



Outline

- Objective
- Simple example
- Complex example

Simple example

Let events be "grades in a class"

$$w_1 = \text{Gets an A}$$
 $P(A) = \frac{1}{2}$
 $w_2 = \text{Gets a}$ $P(B) = \mu$
 $w_3 = \text{Gets a}$ $P(C) = 2\mu$
 $w_4 = \text{Gets a}$ $P(D) = \frac{1}{2} - 3\mu$
(Note $0 \le \mu \le 1/6$)

Assume we want to estimate μ from data. In a given class there were

Α	В	С	D
14	6	9	10

What's the maximum likelihood estimate of μ given a,b,c,d?

Maximize likelihood

P(A) = ½ P(B) = μ P(C) = 2μ P(D) = ½-3μ
P(
$$a,b,c,d \mid μ$$
) = K(½)^a(μ)^b(2μ)^c(½-3μ)^d
log P($a,b,c,d \mid μ$) = log K + a log ½ + b log μ + d log 2μ + d log (½-3μ)
FOR MAX LIKE μ, SET $\frac{\partial \text{Log P}}{\partial μ}$ = 0

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$

Gives max like
$$\mu = \frac{b+c}{6(b+c+d)}$$

Α	В	С	D
14	6	9	10

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

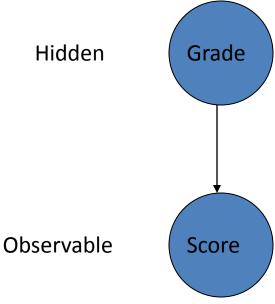
REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$



Most slides from http://www.autonlab.org/tutorials/

Same Problem with Hidden Information

Someone tells us that

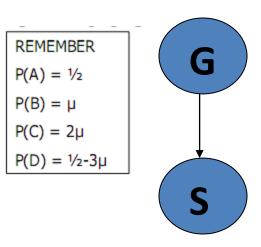
Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

We can answer this question circularly:



MAXIMIZATION

If we know the expected values of \emph{a} and \emph{b} we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

Same Problem with Hidden Information

Someone tells us that

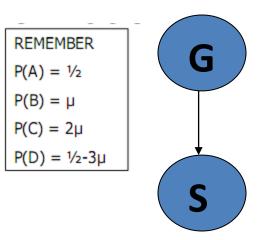
Number of High grades (A's + B's) = h

Number of C's

Number of D's = d

What is the max. like estimate of μ now?

We can answer this question circularly:



EXPECTATION

If we know the value of μ we could compute the

expected value of a and b

Since the ratio a:b should be the same as the ratio $\frac{1}{2}$: μ

$$a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h \qquad b = \frac{\mu}{\frac{1}{2} + \mu} h$$

$$b = \frac{\mu}{\frac{1}{2} + \mu} h$$

MAXIMIZATION

values of a and b If we know the we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

EM for our example

REMEMBER

 $P(A) = \frac{1}{2}$

 $P(B) = \mu$

 $P(C) = 2\mu$

 $P(D) = \frac{1}{2} - 3\mu$

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

Define $\mu(t)$ the estimate of μ on the t'th iteration b(t) the estimate of b on t'th iteration

$$\mu(0)$$
 = initial guess

$$b(t) = \frac{\mu(t)h}{\frac{1}{2} + \mu(t)} = E[b \mid \mu(t)]$$

$$\mu(t+1) = \frac{b(t) + c}{6(b(t) + c + d)}$$

= max like est of μ given b(t)

EM Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

In our example, suppose we had h = 20 c = 10 d = 10 $\mu(0) = 0$		t	μ(t)	b(t)
		0	0	0
		1	0.0833	2.857
		2	0.0937	3.158
		3	0.0947	3.185
μ(σ)	,	4	0.0948	3.187
		5	0.0948	3.187
		6	0.0948	3.187

Most slides from http://www.autonlab.org/tutorials/

Generalization

- X: observable data (score = {h, c, d})
- z: missing data (grade = {a, b, c, d})
- θ : model parameters to estimate () μ

- E: given θ compute the expectation of z
- M: use z obtained in E step, maximize the likelihood $\mathcal{P}(\mathbf{X}, \mathbf{z}|\theta)$ vith respect to

Outline

- Objective
- Simple example
- Complex example

Gaussian Mixtures

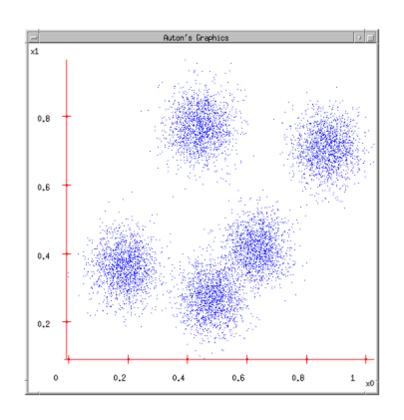
"I've got data from k classes. Each class produces observations with a normal distribution and variance $\sigma^2 I$. Standard simple multivariate gaussian assumptions. I can tell you all the $P(w_i)$'s ."

"I need a maximum likelihood estimate of the μ /s ."

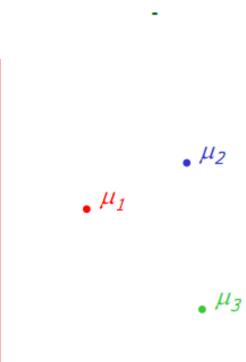
"There's just one thing. None of the data are labeled. I have datapoints, but I don't know what class they're from (any of them!)

Gaussian Mixtures

- Know
 - Data
 - $-\sigma^2I$
 - $-P(w_i)$
- Don't know
 - Data label
- Objective
 - estimate of the μ_i 's

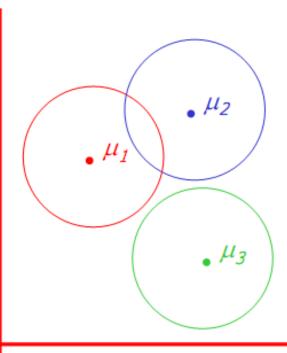


- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i



- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

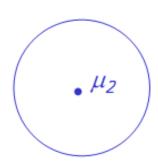
Assume that each datapoint is generated according to the following recipe:



- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

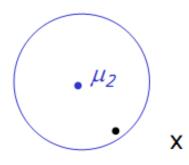
1. Pick a component at random. Choose component i with probability $P(\omega_i)$.



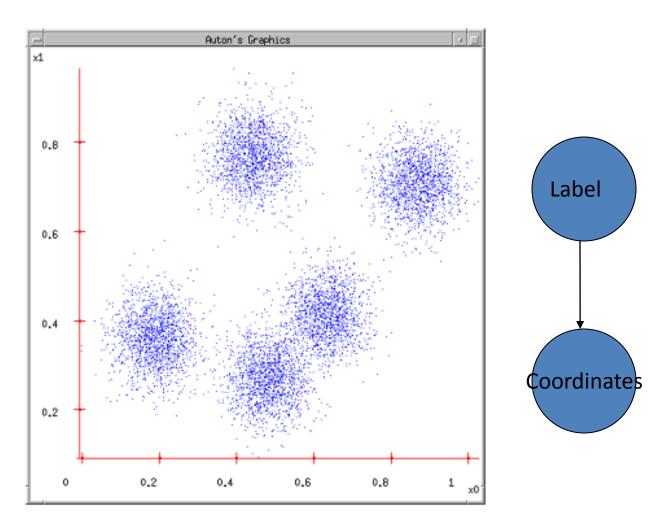
- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability $P(\omega_i)$.
- 2. Datapoint $\sim N(\mu_{ij} \sigma^2 \mathbf{I})$



The data generated



Most slides from http://www.autonlab.org/tutorials/

Computing the likelihood

Remember:

We have unlabeled data $x_1 x_2 ... x_R$ We know there are k classes We know $P(w_1) P(w_2) P(w_3) ... P(w_k)$ We don't know $\mu_1 \mu_2 ... \mu_k$

We can write P(data |
$$\mu_1$$
.... μ_k)
= $p(x_1...x_R | \mu_1...\mu_k)$
= $\prod_{i=1}^R p(x_i | \mu_1...\mu_k)$
= $\prod_{i=1}^R \sum_{j=1}^k p(x_i | w_j, \mu_1...\mu_k) P(w_j)$
= $\prod_{i=1}^R \sum_{j=1}^k K \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu_j)^2\right) P(w_j)$

Most slides from http://www.autonlab.org/tutorials/

EM for GMMs

For Max likelihood we know $\frac{\partial}{\partial \mu_i} \log \Pr \operatorname{ob} \left(\operatorname{data} | \mu_1 ... \mu_k \right) = 0$

Some wild n'crazy algebra turns this into: "For Max likelihood, for each j,

$$\mu_{j} = \frac{\sum_{i=1}^{R} P(w_{j}|x_{i}, \mu_{1}...\mu_{k})x_{i}}{\sum_{i=1}^{R} P(w_{j}|x_{i}, \mu_{1}...\mu_{k})}$$

This is n nonlinear equations in μ_i 's."

EM for GMMs

For Max likelihood we know $\frac{\partial}{\partial \mu_i} \log \Pr \operatorname{ob} \left(\operatorname{data} | \mu_1 ... \mu_k \right) = 0$

Some wild n'crazy algebra turns this into: "For Max likelihood, for each j,

$$\mu_{j} = \frac{\sum_{i=1}^{R} P(w_{j}|x_{i}, \mu_{1}...\mu_{k})x_{i}}{\sum_{i=1}^{R} P(w_{j}|x_{i}, \mu_{1}...\mu_{k})}$$

This is n nonlinear equations in μ_i 's."

If, for each \mathbf{x}_i we knew that for each w_j the prob that $\mathbf{\mu}_j$ was in class w_j is $P(w_j|x_i,\mu_1...\mu_k)$ Then... we would easily compute μ_j .

If we knew each μ_j then we could easily compute $P(w_j|x_i,\mu_1...\mu_j)$ for each w_j and x_i .

EM for GMMs

Iterate. On the th iteration let our estimates be

$$\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t) \}$$

 $p_i(t)$ is shorthand for estimate of $P(\omega_i)$ on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

Just evaluate a Gaussian at x_k

$$P(w_i|x_k,\lambda_t) = \frac{p(x_k|w_i,\lambda_t)P(w_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|w_i,\mu_i(t),\sigma^2\mathbf{I})\widehat{p_i(t)}}{\sum_{j=1}^{c} p(x_k|w_j,\mu_j(t),\sigma^2\mathbf{I})\widehat{p_j(t)}}$$
M-step.

Compute Max. like µ given our data's class membership distributions

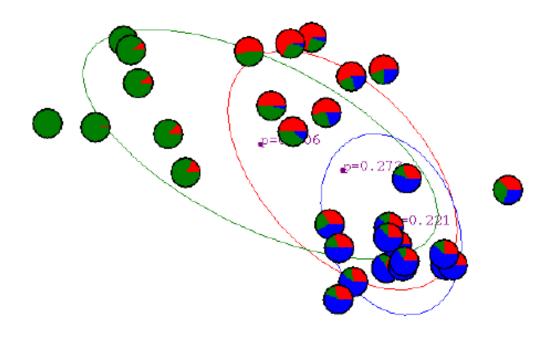
$$\mu_i(t+1) = \frac{\sum_k P(w_i|x_k, \lambda_t) x_k}{\sum_k P(w_i|x_k, \lambda_t)}$$

Gaussian Mixture Example: Start

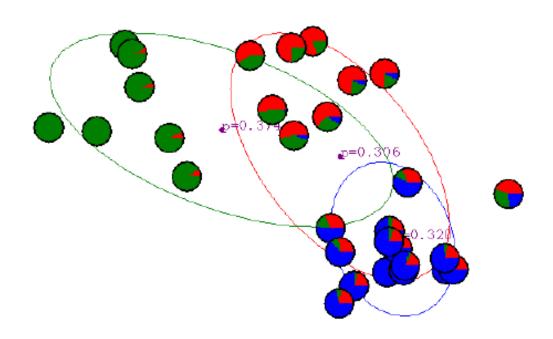
333 .0=aٍ

Advance apologies: in Black and White this example will be incomprehensible

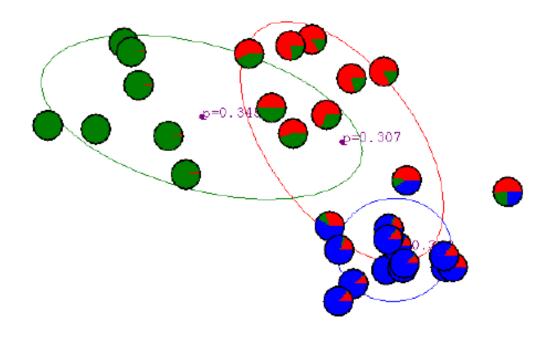
After first iteration



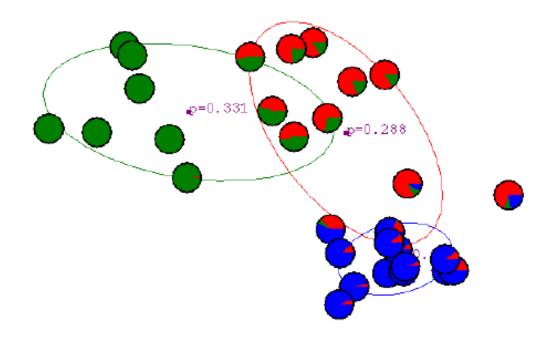
After 2nd iteration



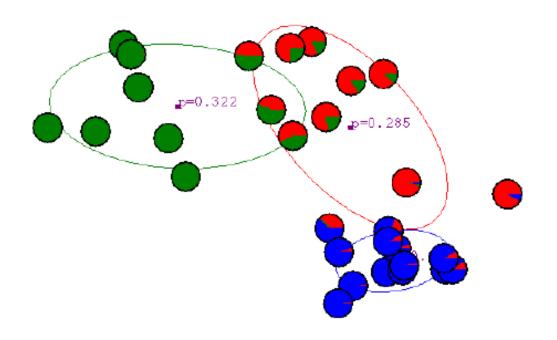
After 3rd iteration



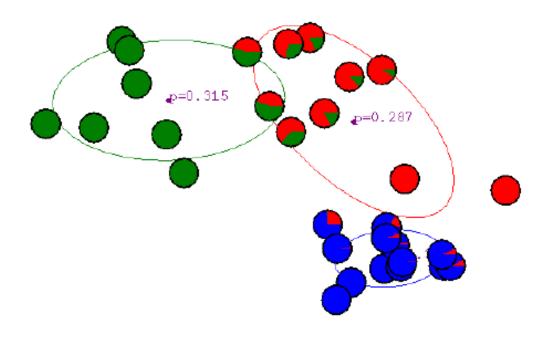
After 4th iteration



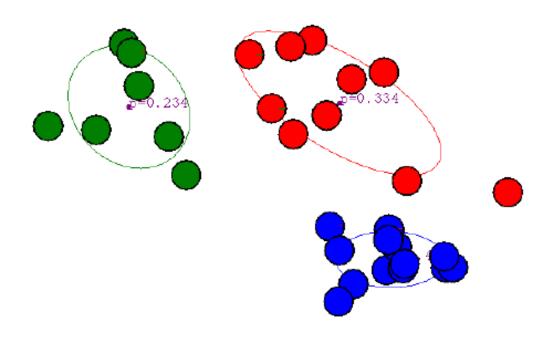
After 5th iteration



After 6th iteration



After 20th iteration



Generalization

- X: observable data $x_1 x_2 ... x_n$
- z: unobservable data $P(w_j|x_i)$:
- θ : model parameters to estimate $\mu_{1}, \mu_{2}...\mu_{k}$

- E: given θ compute the "expectation" of z
- M: use z obtained in E step, maximize the likelihood $\mathcal{P}(\mathbf{X}, \mathbf{z}|\theta)$ vith respect to

For distributions in exponential family

- Exponential family
 - Yes: normal, exponential, beta, Bernoulli, binomial, multinomial, Poisson...
 - No: Cauchy and uniform

- EM using sufficient statistics
 - S1: computing the expectation of the statistics
 - S2: set the maximum likelihood

What EM really is

X: observable data

•z: missing data

Maximize expected log likelihood

$$\theta_{n+1} = \arg \max_{\theta} \left\{ E_{\mathbf{Z}|\mathbf{X},\theta_n} \left\{ \ln \mathcal{P}(\mathbf{X}, \mathbf{z}|\theta) \right\} \right\}$$

E-step: Determine the expectation

$$\mathrm{E}_{\mathbf{Z}|\mathbf{X},\theta_n}\{\ln \mathcal{P}(\mathbf{X},\mathbf{z}|\theta)\} = \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n) \ln \mathcal{P}(\mathbf{X},\mathbf{z}|\theta)$$

• M-step: Maximize the expectation above with respect to θ

Final comments

- Deal with missing data/latent variables
- Maximize expected log likelihood
- Local minima

Expectation-Maximization

- Previously
 - Basics of EM
 - Learning a mixture of Gaussians (k-means)

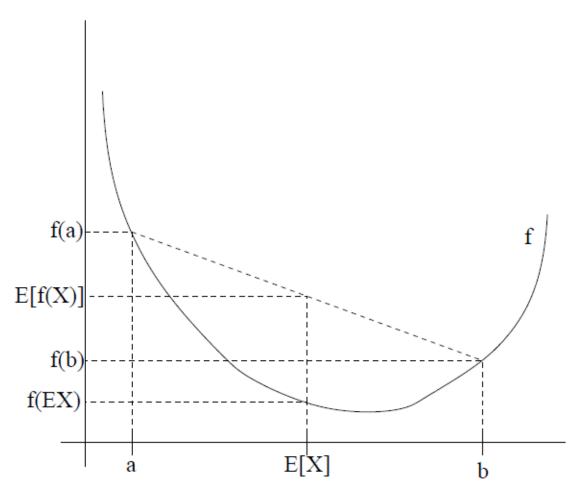
- Next:
 - Short story justifying EM
 - Slides based on <u>lecture notes from Andrew Ng</u>

10,000 foot level EM

- Guess some parameters, then
 - Use your parameters to get a distribution over hidden variables
 - Re-estimate the parameters as if your distribution over hidden variables is correct
- Seems magical. When/why does this work?

Jensen's Inequality

• For f convex, E[f(X)] >= f(E[X])



Maximizing likelihood

• $x^{(i)} = \text{data}$, $z^{(i)} = \text{hidden vars}$, $\theta = \text{parameters}$

$$\sum_{i} \log p(x^{(i)}; \theta) = \sum_{i} \log \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta)$$

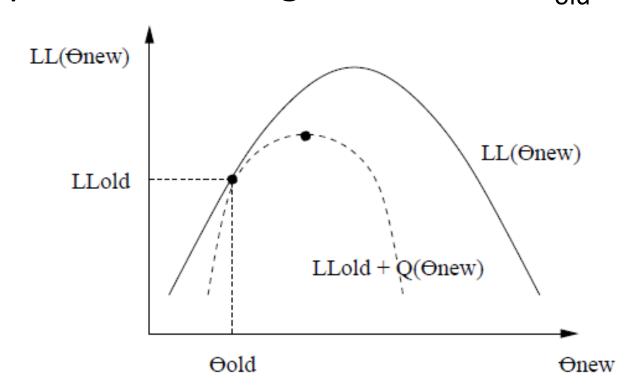
$$= \sum_{i} \log \sum_{z^{(i)}} Q_{i}(z^{(i)}) \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})}$$

$$\geq \sum_{i} \sum_{z^{(i)}} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})}$$

- This lower bound is easier to maximize, but
 - What is Q? What good is maximizing a lower bound?

What do we use for Q?

- EM: Given a guess $\theta_{\rm old}$ for θ , improve it
- Idea: choose Q such that our lower bound equals the true log likelihood at θ_{old} :



Ensure the bound is tight at θ_{old}

When does Jensen's inequality hold exactly?

Ensure the bound is tight at $heta_{ m old}$

- When does Jensen's inequality hold exactly?
- Sufficient that

$$\log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

be constant with respect to $z^{(i)}$

• Thus, choose $Q(z^{(i)}) = p(z^{(i)} | x^{(i)}; \theta_{old})$

Putting it together

(E-step) For each i, set

$$Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta).$$

(M-step) Set

$$\theta := \arg \max_{\theta} \sum_{i} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i(z^{(i)})}$$

For exponential family

- *E* step:
 - Use θ_n to estimate **expected** sufficient statistics over **complete** data
- *M* step
 - Set θ_{n+1} = ML parameters given sufficient statistics
 - (Or MAP parameters)

EM in practice

- Local maxima
 - Random re-starts, simulated annealing...
- Variants
 - Generalized EM: increase (not nec. maximize)
 likelihood in each step
 - Approximate E-step (e.g. sampling)