Bayes Net Learning

Northwestern University EECS 395/495:
Special Topics in Machine Learning

Homework Remaining

Questions about homework #37

Homework #4 will be about semi-supervised
learning and expectation-maximization

...Homeworks #3-#4: the “how” of Graphical
Models

Then paper presentations (more on this soon)

Road Map

* Inference
* Learning

— Parameters, Structure, EM

* Semi-supervised Learning, HMMs

Today: Learning

* General Rules of Thumb in Learning

* Learning in Graphical Models

— Parameters in Bayes Nets

What is Learning?

* @Given:
— target domain (set of random variables)
* E.g., disease diagnosis: symptoms, test results, diseases

— Expert knowledge

 MD’s opinion on which diseases cause which symptoms
— Training examples from the domain

* Existing patient records

* Build a model that predicts future examples

— Use expert knowledge & data to learn PGM structure and
parameters

General Rules of Thumb in Learning

 The more training examples, the better

 The more (~correct) assumptions, the better
— Model structure (e.g., edges in Bayes Net)
— Feature selection

* Fewer irrelevant params => better

Optimizing on Training Set

* Cross-validation
— Partition data into k pieces (a.k.a. “folds”)

— For each piece p

 train on all pieces but p, teston p
* Average the results

e Homework 3: 10-fold CV on training set

— How well will this predict test set performance?

Today: Learning

* General Rules of Thumb in Learning

* Learning in Graphical Models
— Parameters in Bayes Nets
— Briefly: Continuous conditional distributions in Bayes Nets
— Bias vs. Variance
— Discriminative vs. Generative training
— Parameters in Markov Nets

Learning in Graphical Models

* Problem Dimensions

— Model

* Bayes Nets
* Markov Nets

— Structure

e Known

e Unknown (structure learning)

— Data

 Complete
* Incomplete (missing values or hidden variables)

Learning in Graphical Models

* Problem Dimensions (today)

— Model

* Bayes Nets
* Markov Nets

— Structure

* Known
e Unknown (structure learning)

— Data

* Complete
* Incomplete (missing values or hidden variables)

Learning in Bayes Nets — the upshot

e Just statistical estimation for each CPT

Trainini Data .H .H

P, (A)=0.714
P, (B | A=1)=0.6

R O KB O Kk Kk .
R R R R O O K

Learning in Bayes Nets — details

* Problem statement (for today):

— Given a Bayes Network structure G, and a set of
complete training examples {X:}

— Learn the CPTs for G.

* Assumption (as before in stat. estimation):

Training examples are independent and identically
distributed (i.i.d.) from an underlying distribution P*

* Why just statistical estimation for each CPT?

Learning in Bayes Nets

* Thumbtack problem can be viewed as learning
the CPT for a very simple Bayes Net:

heads tails
heads/tails
& J’ P(X = heads) = &

Thumbtack problem examples from Chris Meek, Microsoft Research

Learning as Inference

* Think of learning P(® = @ | {X}) as inference

heads tails
heads/tails
& \L P(X, = heads) = &

L.

toss 1 toss 2 toss N

Next Simplest Bayes Net

heads/tails @ @ heads/tails

T

“heads” “tails”

heads tail
(<::\\ \~_L,/» Cor— o

NN

Next Simplest Bayes Net

heads/tails @ @ heads/tails

?

T S

toss 1 toss 2 toss N toss 1 toss 2 toss N

Next Simplest Bayes Net

heads/tails @ @ heads/tails

Next Simplest Bayes Net

heads/tails @ @ heads/tails

“Parameter Independence”

SD D S

toss 1 toss 2 toss N toss 1 toss 2 toss N

Getting Tougher

heads/tails ®—@ heads/tails

Three probabilities to learn:

* 9X:heads
* 9Y:heads|X:heads
* 9Y:heads|X:taiIs

Learning as Inference

heads/tails ®—® heads/tails

Parameter Independence

heads/tails ®—® heads/tails

Three Separate Thumbtack Problems

heads/tails ®—@ heads/tails

Parameter Estimation in Bayes Nets

Each CPT learned independently

Easy when CPTs have convenient form

— Multinomials

* Maximum Likelihood = counting

— Gaussian, Poisson, etc.

And priors are conjugate
— E.g. Beta for Binomials, etc.

And data is complete

—

Parameter Priors

* MAP estimation

Training Data
L

P, (B | A=0)=2/2=1.0
P, o(B | A=O)
= (2+1)/(3+2) = 0.6

“Laplace smoothing”
..same as P(®; | ,_o) = Beta(2, 2

R O KB O Kk Kk .
R R R R O O K

Parameter Estimation in Bayes Nets

Each CPT learned independently

Easy when CPTs have convenient form

— Multinomials
* Maximum Likelihood = counting

— Gaussian, Poisson, etc.

And priors are conjugate
— E.g. Beta for Binomials, etc.

And data is complete ¢

Incomplete Data

* Say we don’t know X,

heads/tails ®—@ heads/tails

Parameters
are now
dependent!

Incomplete Data in Practice

* Options:
— Just ignore it (for all examples)

— Replace missing Xi with most typical value in
training set

— Sample Xi from P(Xi) in training set
— Let “unknown” be a value for Xi

— Try to infer missing values (special case: semi-
supervised learning)

Today: Learning

* General Rules of Thumb in Learning

* Learning in Graphical Models
— Parameters in Bayes Nets
— Briefly: Continuous conditional distributions in Bayes Nets
— Bias vs. Variance
— Discriminative vs. Generative training
— Parameters in Markov Nets

Learning Continuous CPTs

* Options:
— Discretize

* Weka does this
* Not a bad option

— Use canonical functions
e Gaussians most popular
* see Matlab’s package or WinMine, etc.

Continuous CPT Example

E.g., Linear Gaussian

P(X | u) =N(f,+ [, u, +... B, u,; o?)

Linear Gaussian

ML solution from system of equations, e.g.:

E[X] = S, + p, Elu]+... /5, Elu,]

Today: Learning

* General Rules of Thumb in Learning

* Learning in Graphical Models
— Parameters in Bayes Nets
— Briefly: Continuous conditional distributions in Bayes Nets
— Bias vs. Variance
— Discriminative vs. Generative training
— Parameters in Markov Nets

Bias vs. Variance

* Efficacy of learning varies with Bayes Net
structure and amount of training data

Bayes Net desigh impacts learning

* Data required to learn a CPT grows roughly
linearly with number of parameters

— Fewer variables & edges is better

* Including more informative variables and
relationships improves accuracy
— More variables & edges is better (?)

e =>selection of variables and edges is the art
of Bayes Net design

Overfitting in Bayes Nets

Training data is the

P(C) following, repeated 4 times:
. p(c|B)- RGN

B=0 4/12 ﬂ
1

B=1 16/16 1

* Using P(C | A, B) => zero training
error (vs. 17% error for P(C | B)),
but cells have
12, 8, 4, 4 total samples

* =>\ery susceptible to random noise

R O P O kR B
R O B Rk O O Bk
R R R R O O

Bias vs. Variance (1 of 3)

010 00
SIRG

High Bias Low Bias
Low Variance High Variance
Underfitting Overfitting

P(C | A, B)

Bias vs. Variance (2 of 3)

1 -
0.9 -
0.8 -
0.7 ~
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

O ANB IA"notBlnotA"BI not AN O
not B

High Bias

Low Variance

Underfitting

X

\
ANB IA’\notBlnotA"BI not A A
not B
Low Bias
High Variance

Overfitting

Bias vs. Variance (3 of 3)

* High bias sometimes okay

— E.g. Naive Bayes effective in practice

How do you choose?

 Cross-validation

* And/or use heuristics for trading training
accuracy for model complexity

— Useful in automated structure learning
— E.g., pick a structure and algorithmically refine
— Next week

Learning

* General Rules of Thumb in Learning

* Learning in Graphical Models
— Parameters in Bayes Nets
— Briefly: Continuous conditional distributions in Bayes Nets
— Bias vs. Variance
— Discriminative vs. Generative training
— Parameters in Markov Nets

Discriminative vs. Generative training

e Say our graph G has variables X, Y
* Previous method learns P(X, Y)

e But often, the only inferences we care about
are of form P(Y | X)
— P(Disease | Symptoms = e)
— P(StockMarketCrash | RecentPriceActivity = e)

Discriminative vs. Generative training

* Learning P(X, Y): generative training
— Learned model can “generate” the data

e Learning only P(Y | X): discriminative training
— Model can’t assign probs. to X —only Y given X

* |dea: Only model what we care about

— Don’t “waste data” on params irrelevant to task

— Side-step false independence assumptions in
training (example to follow)

Generative Model Example

* Naive Bayes model
— Y binary {1=spam, O=not spam}
X an n-vector: message has word (1) or not (0)

— Re-write P(Y | X) using Bayes Rule, apply Naive
Bayes assumption

— 2n + 1 parameters, for n observed variables

’)

@otte ry”

“winner” “Dear

Generative => Discriminative (1 of 3)

 But P(Y | X) can be written more compactly

P(Y | X) = 1
1+exp(wy+w, x,+..+w,X,)

* Total of n + 1 parameters w;,

’)

@otte ry”

“winner” “Dear

Generative => Discriminative (2 of 3)

* One way to do conversion (vars binary):

w, = P(Y = 0) P(X,=0|Y=0) P(X,=0|Y=0)...
P(Y =1) P(X,=0|Y=1) P(X,=0|Y=1)...

fori>0:
exp(w,)= P(X=0|Y=1) P(X=1|Y=0)
P(X=0]Y=0) P(X=1]Y=1)

Generative => Discriminative (3 of 3)

* We reduced 2n + 1 parameterston +1

— Bias vs. Variance arguments says this must be
better, right?

* Not exactly. If we construct P(Y | X) to be
equivalent to Naive Bayes (as before)
— then it’s...equivalent to Naive Bayes

* |dea: optimize the n + 1 parameters directly,
using training data

Discriminative Training

* |n our example:
P(Y | X) = 1
1+exp(wy+w, x,+..+w,X,)
* Goal: find w;, that maximize likelihood of
training data Ys given training data Xs
— Known as “logistic regression”
— Solved with gradient ascent techniques
— A convex (actually concave) optimization problem

0.9r
0.8
0.7
0.6
051
0.4r
03¢
0.2¢
0.1¢

P(Z)

—10 -5 0 3 10

Nalve Bayes vs. LR

* Naive Bayes “trusts its assumptions” in
training

* Logistic Regression doesn’t — recovers better
when assumptions violated

NB vs. LR: Example

Training Data

Soa] ottery | Wimer | Lunch | Noon
1 0

N T =)

1 1

1 1 1 1
0 0 0 1
0 1 1 0

* Naive Bayes will classify the last example incorrectly,
even after training on it!

 Whereas Logistic Regression is perfect with e.g.,
w,=0.1
Wlottery = Wyinner = Wiunch = -0.2
w =04

noon

Logistic Regression in practice

Can be employed for any numeric variables X.

— or for other variable types, by converting to numeric
(e.g. indicator) functions

“Regularization” plays the role of priors in Naive
Bayes

Optimization tractable, but (way) more expensive
than counting (as in Naive Bayes)

Discriminative Training

* Nalve Bayes vs. Logistic Regression one
illustrative case

* Applicable more broadly, whenever queries
P(Y | X) known a priori

Learning

* General Rules of Thumb in Learning

* Learning in Graphical Models
— Parameters in Bayes Nets
— Briefly: Continuous conditional distributions in Bayes Nets
— Bias vs. Variance
— Discriminative vs. Generative training
— Parameters in Markov Nets

Recall: Markov Networks

* Undirected Graphical Model
— Potential functions ¢ defined over cliques

* Px) =11 ¢(X) Z=2,11 ¢(x.)
Kn(-)r\r/\i/\llciea:ige>

m— T Trivia ATV, TK)
Little Knowledge

Good Little 3.0 Little Little
Low Lots 3.0 Lots Little 1.0
Good Lots 1.0 Little Lots 1.5

Lots Lots 3.0

Log-linear Formulation (1 of 2)

P(x) = exp(X; w.f; (D)))
Z
* Example, write ¢,(G, TV) as exp(w, f,(G, TV) + ... + w, f,(G, TV))

w;=In2.0 w,=In3.0 wy;=In3.0 w,=1In 1.0
o O) o)

Little 1 0 0 0
Good Little 3.0 0 1 0 0
Low Lots 3.0 0 0 1 0
Good Lots 1.0 0 0 0 1

Log-linear Formulation (2 of 2)

* P(x)=exp(XZ; w.,f;(D))
4

e Why?
— “Feature” f; can be simpler than full potentials
— Learning easy to express

Learning in Markov Networks

 Harder than in Bayes Nets
* Why? In Bayes Nets, likelihood is:

— P(Data | 8)=T1 IT. P(X.[m]| Parents(X)[m] : 6)

m €Data

where X [m] is the assignment to X, in example m

=1, I1 P(X.[m]| Parents(X))[m] : 6)

m €Data

— Assuming param independence, maximize global likelihood by
maximizing each CPT likelihood
I1 P (X.[m] | Parents(X;)[m] : 6) independently

m €Data

Learning in Markov Networks

Harder than in Bayes Nets
In Markov Net,

Likelihood =
P(Data | w) =11 _p... exp(Z; wf,(D,[m]))
VA

W

But Z,, = 2., ¢ vai) €XP(Z; Wi (x))
— Sum over exps involving all w,
Can’t decompose as we did in Bayes Net case

So what do we do?

Maximize likelihood using Gradient Ascent

— Or 2nd order optimization
0/ ow; In P(Data | w) = E,_.[f:(D))] - E,[f; (D))]
Concave (no local maxima)

Requires inference at each step

— Slow

Approximation: Pseudo-likelihood

* Pseudo-likelihood PL(Data | @) =
1 IT. P(X[m]| Neighbors(X;)[m] : 6)

m Data

— Assume variables depend only on values of neighbors in data

e No more Z!

— Easier to compute/optimize (decomposes)

* But not necessarily a great approximation

— Equal to likelihood in limit of infinite training data

Discriminative Training

e LearnP(Y | X)

* 0/ 0ow;InP(Yp,, | Xparar W) = 2., (f; (yIm], x[m])] - E,[f; | x[m]])
* Rightmost term: run inference for each value x[m] in data

ORORNC) &)

(WD————

What have we learned?

* General Rules of Thumb in Learning

* Learning in Graphical Models
— Parameters in Bayes Nets
— Briefly: Continuous conditional distributions in Bayes Nets
— Bias vs. Variance
— Discriminative vs. Generative training
— Parameters in Markov Nets

Rest of course

* Next:

— Structure Learning

e After that:

— learning with missing data (semi-supervised learning),
HMMs

