Basics of Probability

Lecture 1

Doug Downey, Northwestern EECS 395/495 Fall 2011

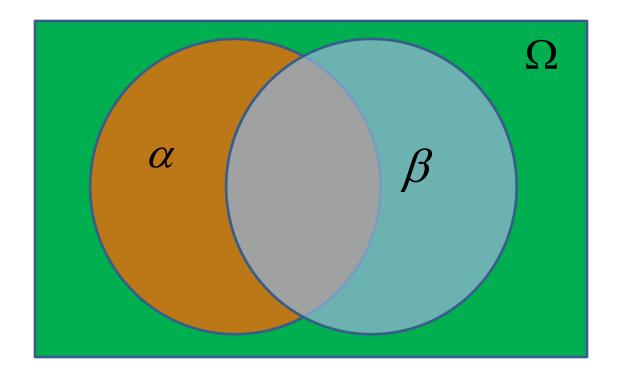
Events

- Event space Ω
 - E.g. for dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$

- α = event we roll an even number = {2, 4, 6} ∈ S
- S must:
 - Contain the empty event \varnothing and the trivial event Ω
 - Be closed under union & complement

$$-\alpha$$
, $\beta \in S \rightarrow \alpha \cup \beta \in S$ and $\alpha \in S \rightarrow \Omega - \alpha \in S$

Probability Distributions



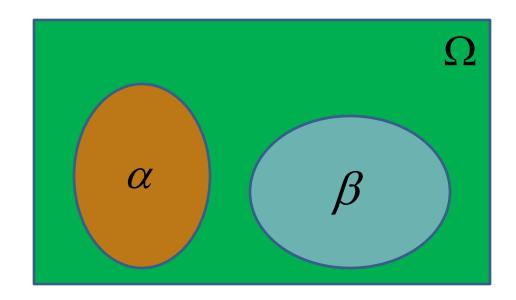
Can visualize probability as fraction of area

Probability Distributions

• A probability distribution P over (Ω, S) is a mapping from S to real values such that:

$$P(\alpha) \ge 0$$

 $P(\Omega) = 1$
 $\alpha, \beta \in S \land \alpha \cap \beta = \emptyset \rightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$



Probability: Interpretations & Motivation

- Interpretations
 - Frequentist
 - Bayesian/subjective
- Why use probability for subjective beliefs?
 - Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 1931]
 - Example: P(A) = 0.6, P(not A) = 0.8?
 - Example: P(A) > P(B) and P(B) > P(A)?

Random Variables (1 of 2)

- A random variable is a function from Ω to a value
 - A short-hand for referring to attributes of events.
- E.g., your grade in this course
 - Let Ω = set of possible scores on hmwks and final
 - Cumbersome to have separate events GradeA,
 GradeB, GradeC
 - So instead define a random variable Grade
 - Deterministic function from Ω to {A, B, C}

Random Variables (2 of 2)

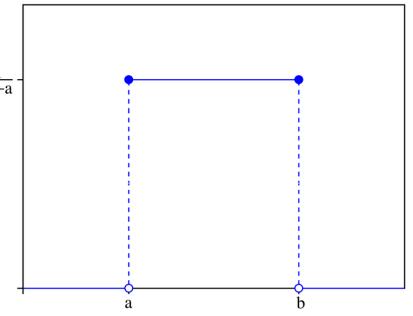
- Denote P(GradeA) as P(Grade = A)
 - Random variables will be in uppercase
 - When r.v. clear from context, abbreviate (e.g. P(A))
- Val(X) = set of values r.v. X can take
 - $Val(Grade) = \{A, B, C\}$
- Conjunction
 - Rather than write P((Grade = A) \cap (Age = 21)), we use P(Grade = A, Age = 21) or just P(A, 21).

Continuous Random Variables

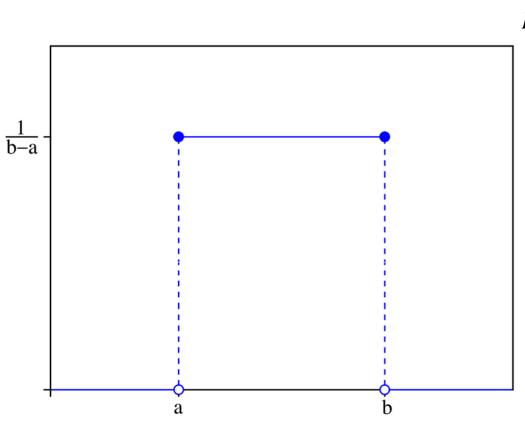
 For continuous r.v. X, specify a density p(x), such that:

$$P(r \le X \le s) = \int_{x=r}^{s} p(x)dx$$

E.g., $p(x) = \begin{cases} \frac{1}{b-a} & b \ge x \ge a \\ 0 & \text{otherwise} \end{cases}$



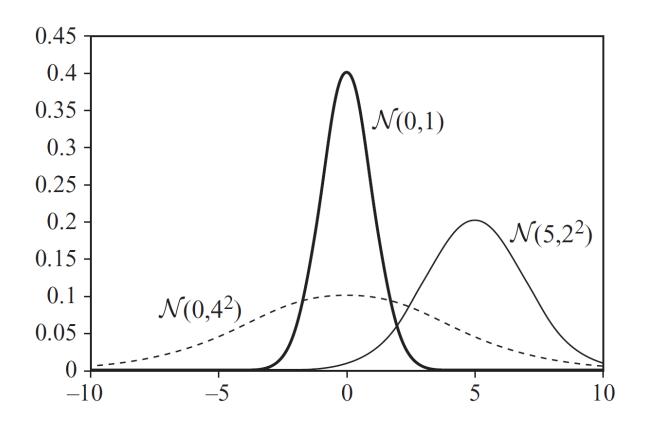
Uniform Continuous Density



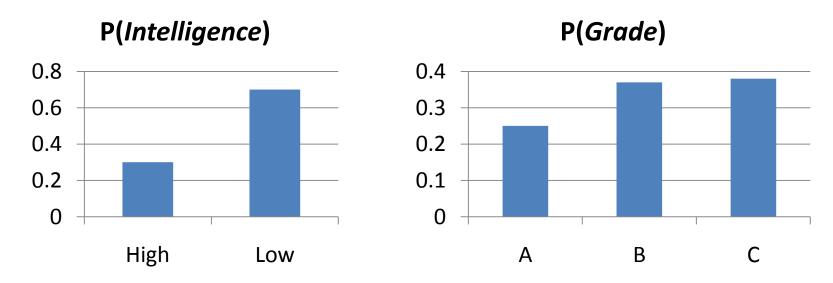
$$p(x) = \begin{cases} \frac{1}{b-a} & b \ge x \ge a \\ 0 & \text{otherwise} \end{cases}$$

Gaussian Density

•
$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

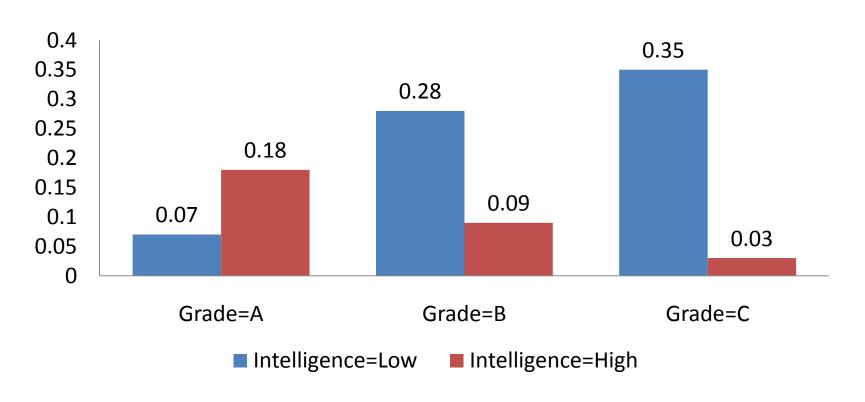


Distributions



 Called "marginal" because they apply to only one r.v.

P(Intelligence, Grade)



		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

Joint Distribution specified with 2*3 - 1 = 5 values

		Intelligence			
		Low High			
Grade	Α	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

P(Grade = A, Intelligence = Low)? 0.07

		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Grade = A)? 0.07 + 0.18 = 0.25

		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Grade = A
$$\vee$$
 Intelligence = High)?
 $0.07 + 0.18 + 0.09 + 0.03 = 0.37$

=> Given the joint distribution, we can compute probabilities for any proposition by summing events.

- P(Grade = A | Intelligence = High) = 0.6
 - the probability of getting an A given only Intelligence =
 High, and nothing else.
 - If we also know *Motivation* = High or *OtherInterests* = Many, the probability of an A changes
- Formal Definition:

$$-P(\alpha \mid \beta) = P(\alpha, \beta) / P(\beta)$$

• When $P(\beta) > 0$

- Also:
 - $-P(A \mid B, C) = P(A, B, C) / P(B, C)$

- More generally:
 - $-P(A \mid B) = P(A, B) / P(B)$
 - (Boldface indicates vectors of variables)
- P(Grade = A | Grade = A, Intelligence = high)?
- P(CuriousGeorge | MonkeyWithVacuum, Cape)?

		Intelligence			
		Low High			
Grade	Α	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

```
P(Grade = A \mid Intelligence = High)?

P(Grade = A, Intelligence = High) = 0.18

P(Intelligence = High) = 0.18+0.09+0.03 = 0.30

P(Grade = A \mid Intelligence = High) = 0.18/0.30 = 0.6
```

		Intelligence		
		Low	High	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Intelligence | Grade = A)?

Intelligence				
Low High				
0.28	0.72			

		Intelligence		
		Low	High	
Grade	Α	0.28	0.72	
	В	0.76	0.24	
	С	0.92	0.08	

P(Intelligence | Grade)?

Actually three separate distributions, one for each *Grade* value (has three independent parameters total)

Chain Rule

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid X_{i-1} = x_{i-1}, \dots, X_1 = x_1)$$

- E.g., P(Grade=B, Int. = High)
 = P(Grade=B | Int. = High)P(Int. = High)
- Can be used for distributions...

$$-P(A, B) = P(A \mid B)P(B)$$

Handy Rules for Conditional Probability

- $P(A \mid B = b)$ is a single distribution, like P(A)
- P(A | B) is not a single distribution
 - a set of |Val(B)| distributions
- Any statement true for arbitrary distributions is also true if you condition on a new r.v.
 - $P(A, B) = P(A \mid B)P(B)$? (chain rule) Then also $P(A, B \mid C) = P(A \mid B, C) P(B \mid C)$
- Likewise, any statement true for arbitrary distributions is also true if you replace an r.v. with two/more new r.v.s
 - $-P(A \mid B) = P(A, B) / P(B)$? (def. of cond. Prob)
 - $P(A \mid C, D) = P(A, C, D) / P(C, D) \text{ or } P(A \mid B) = P(A, B) / P(B)$

Queries

- Given subsets of random variables Y and E, and assignments e to E
 - Find $P(Y \mid E = e)$
- Answering queries = inference
 - The whole point of probabilistic models, more or less
 - P(Disease | Symptoms)
 - P(StockMarketCrash | RecentPriceActivity)
 - P(CodingRegion | DNASequence)
 - P(PlayTennis | Weather)
 - ...(the other key task is learning)

Answering Queries: Summing Out

		Intellige	nce = Low	Intelligence=High	
		Time=Lots	Time=Little	Time=Lots	Time=Little
	Α	0.05	0.02	0.15	0.03
Grade	В	0.14	0.14	0.05	0.0
	С	0.10	0.25	0.01	0.02

P(*Grade* | *Time* = Lots)?

$$\sum_{v \in Val \ (Intelligen \ ce)} P(Grade \ , Intelligen \ ce = v \mid Time = Lots)$$

MAP Queries

- Given subsets of random variables Y and E, and assignments e to E
 - Find MAP($Y \mid e$) = arg max_y P($y \mid e$)
- MAP stands for "maximum a posteriori"
 - (more later)

Answering Queries: Solved?

- Given the joint distribution, we can answer any query by summing
- ...but, joint distribution of 500 Boolean variables has 2^500 -1 parameters (about 10^150)
- For non-trivial problems (~25 boolean r.v.s or more), using the joint distribution requires
 - Way too much computation to compute the sum
 - Way too many observations to learn the parameters
 - Way too much space to store the joint distribution

Conditional Independence (1 of 3)

- Independence
 - -P(A, B) = P(A)*P(B), denoted $A \perp B$
 - E.g. consecutive dice rolls
 - Gambler's fallacy
 - Rare in (real) applications

Note: Book calls this "marginal independence" when applied to r.v.s, but just "independence" when applied to events

Conditional Independence (2 of 3)

- Conditional Independence
 - $P(A, B \mid C) = P(A \mid C) P(B \mid C)$, denoted $(A \perp B \mid C)$
 - Much more common
 - E.g., (GetIntoNU \perp GetIntoStanford | Application), but **NOT** (GetIntoNU \perp GetIntoStanford)

Conditional Independence (3 of 3)

How does Conditional Independence save the day?

```
P(NU, Stanford, App) =
P(NU|Stanford, App)*P(Stanford | App)*P(App)

Now, (A \perp B \mid C) means P(A \mid B, C) = P(A \mid C)

So since (NU \perp Stanford \mid App), we have
P(NU, Stanford, App) =
P(NU \mid App)*P(Stanford \mid App)*P(App)

Say Val(App) = \{Good, Bad\} and Val(School) = \{Yes, No, Wait\}
```

All we need is 4+4+1=9 numbers (vs. 3*3*2-1=17 for the full joint)

Full joint has size exponential in # of r.v.s
 Conditional independence eliminates this!

Properties of Conditional Independence

Decomposition

$$-(X\perp Y, W\mid Z) => (X\perp Y\mid Z)$$

Weak Union

$$-(X\perp Y, W\mid Z) \Rightarrow (X\perp Y\mid Z, W)$$

Contraction

$$-(X \perp W \mid Z, Y) & (X \perp Y \mid Z) => (X \perp Y, W \mid Z)$$

Bayes' Rule

- $P(A \mid B) = P(B \mid A) P(A) / P(B)$
- Example:

```
P(symptom | disease) = 0.95, P(symptom | ¬disease) = 0.05
P(disease = 0.0001)

P(disease | symptom)
= P(symptom | disease)*P(disease)
P(symptom)

= 0.95*0.0001 ≈ 0.002
```

0.95*0.0001 + 0.05*0.9999

Bayes' Rule

- $P(A \mid B) = P(B \mid A) P(A) / P(B)$
- Also:

$$- P(A \mid B, C) = P(B \mid A, C) P(A \mid C) / P(B \mid C)$$

- More generally:
 - $-P(A \mid B) = P(B \mid A) P(A) / P(B)$
 - (Boldface indicates vectors of variables)

Terms for Bayes

- P(Model | Data) = P(Data | Model) P(Model) / P(Data)
- P(*Model*) : **Prior**
- P(Data | Model) : Likelihood
- P(Model | Data) : Posterior

What have we learned?

- Probability a calculus for dealing with uncertainty
 - Built from small set of axioms (ignore at your peril)
- Joint Distribution P(A, B, C, ...)
 - Specifies probability of all combinations of r.v.s
 - Intractable to compute exhaustively for non-trivial problems
- Conditional Probability P(A | B)
 - Specifies probability of A given B
- Conditional Independence
 - Can radically reduce number of variable combinations we must assign unique probabilities to.
- Bayes' Rule