Machine Learning

Clustering

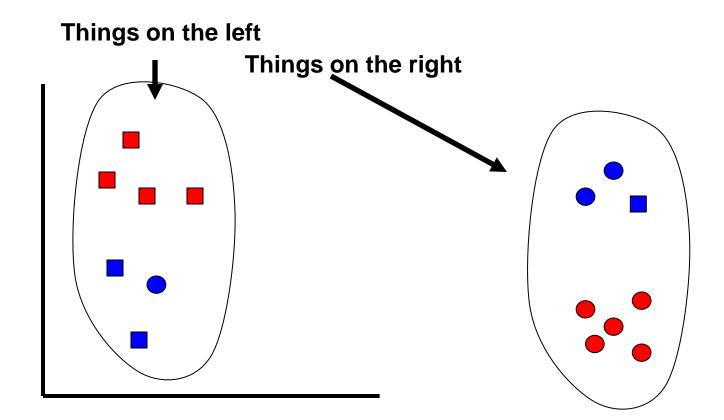
Some slides from B. Pardo, P. Domingos

First, some epistemology

- There are known knowns. These are things we know that we know.
 - Databases!
- There are known unknowns. That is to say, there are things that we know we don't know.
 - Supervised Machine Learning
- But there are also unknown unknowns. There are things we don't know we don't know
 - Unsupervised Machine Learning (Clustering)

Clustering

Grouping data into (hopefully useful) sets.



Clustering

- Unsupervised Learning

 No labels
- Why do clustering?
 - Hypothesis Generation/Data Understanding
 - Clusters might suggest natural groups.
 - Visualization
 - Data pre-processing, e.g.:
 - Converting continuous attributes to nominal
 - For *efficiency*
 - Text Classification (e.g., search engines, TextRunner)

Some definitions

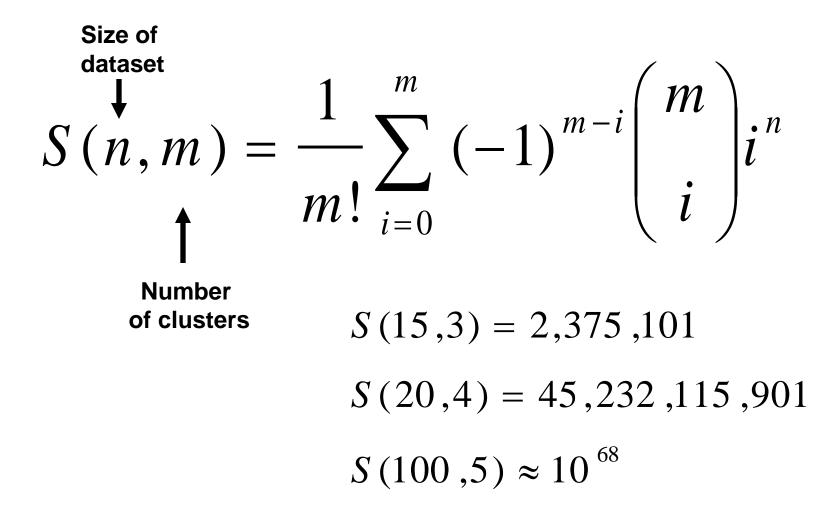
• Let *X* be the dataset:

$$X = \{x_1, x_2, x_3, \dots, x_n\}$$

An *m-clustering* of X is a partition of X into *m* sets (clusters) C₁,...C_m such that:

- 1. Clusters are non empty : $C_i \neq \{\}, 1 \le i \le m$
- 2. Clusters cover all of X : $\bigcup_{i=1}^{m} C_i = X$
- 3. Clusters do not overlap : $C_i \cap C_j = \{\}$, if $j \neq i$

How many possible clusters? (Stirling numbers)



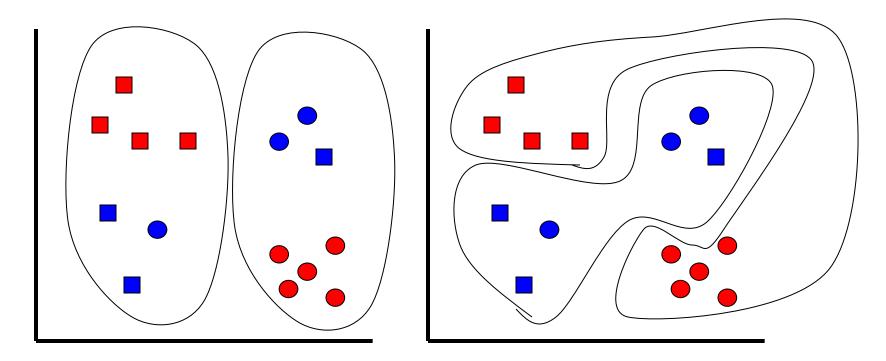
What does this mean?

- We can't try all possible clusterings.
- Clustering algorithms look at a small fraction of all partitions of the data.

• The exact partitions tried depend on the kind of clustering used.

Who is right?

- Different techniques cluster the same data set DIFFERENTLY.
- Who is right? Is there a "right" clustering?



Steps in Clustering

- Select Features
- Define a Proximity Measure
- Choose a Clustering Algorithm
- Validate the Results
- Interpret the Results

Kinds of Clustering

- Sequential
 - Fast
 - Results depend on data order
- Cost Optimization
 - Fixed number of clusters (typically)
 - Probabilistic models
- Hierarchical
 - Start with many clusters
 - join clusters at each step

A Sequential Clustering Method

- Basic Sequential Algorithmic Scheme (BSAS)
 - S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, London England, 1999
- Assumption: The number of clusters is not known in advance.
- Let:
 - d(x,C) be the *distance* between feature vector x and cluster C.
 - Θ be the *threshold of dissimilarity*
 - q be the *maximum number of clusters*

BSAS Pseudo Code

```
m = 1
C_1 = \{x_1\}
For i = 2 to n
   Find C_k: d(x_i, C_k) = \min_{\forall j} d(x_i, C_j)
   If (d(x_i, C_k) > \Theta) and (m < q)
      m = m + 1
      C_{m} = \{x_{i}\}
   Else
      C_{k} = C_{k} \cup \{x_{i}\}
   End
End
```

Where is the cluster, exactly?

d(x, C) = distance from x to C

How to compute?

BSAS Characteristics

Advantages

Fast! Only examine each data point once (takes O(*nq*))

Number of clusters tuned from data

Disadvantages

Must set q, Θ Sensitive to initial conditions

Kinds of Clustering

- Sequential
 - Fast
 - Results depend on data order
- Cost Optimization
 - Fixed number of clusters (typically)
 - Often probabilistic models
- Hierarchical
 - Start with many clusters
 - join clusters at each step

A Cost-optimization method

K-means clustering

– J. B. MacQueen (1967): "Some Methods for classification and Analysis of Multivariate Observations, *Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and*

Probability", Berkeley, University of California Press, 1:281-297

- A greedy algorithm
- Partitions *n* samples into *k* clusters
- minimizes the sum of the squared distances to the cluster centers

The K-means algorithm

- Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids (means).
- Assign each object to the group that has the closest centroid (mean).
- When all objects have been assigned, recalculate the positions of the K centroids (means).
- Repeat Steps 2 and 3 until the centroids no longer move.

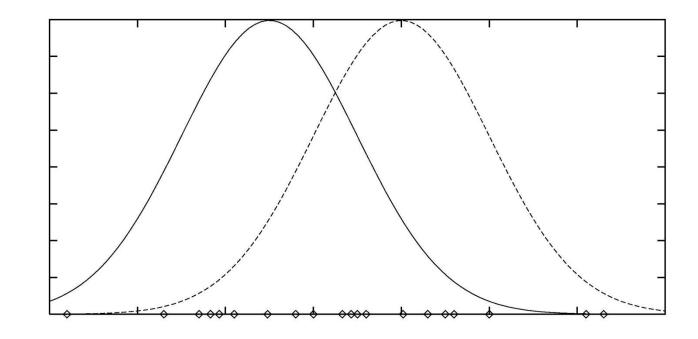
K-means clustering

- The way to initialize the mean values is not specified.
 Randomly choose k samples?
- Results depend on the initial means
 - Try multiple starting points?
- Assumes K is known.
 - How do we choose this?

Mixture Models

$$P(x) = \sum_{i=1}^{n_c} P(c_i) P(x|c_i)$$

Objective function: Log likelihood of data **Naive Bayes:** $P(x|c_i) = \prod_{j=1}^{n_d} P(x_j|c_i)$ **AutoClass:** Naive Bayes with various x_j models **Mixture of Gaussians:** $P(x|c_i) =$ Multivariate Gaussian **In general:** $P(x|c_i)$ can be any distribution **Mixtures of Gaussians**



Х

$$P(x|\mu_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_i}{\sigma}\right)^2\right]$$

p(x)

The EM Algorithm

Initialize parameters ignoring missing information

Repeat until convergence:

- **E step:** Compute expected values of unobserved variables, assuming current parameter values
- **M step:** Compute new parameter values to maximize probability of data (observed & estimated)

(Also: Initialize expected values ignoring missing info)

EM for Mixtures of Gaussians

Initialization: Choose means at random, etc. **E step:** For all examples x_k :

$$P(\mu_i|x_k) = \frac{P(\mu_i)P(x_k|\mu_i)}{P(x_k)} = \frac{P(\mu_i)P(x_k|\mu_i)}{\sum_{i'}P(\mu_{i'})P(x_k|\mu_{i'})}$$

M step: For all components c_i :

$$P(c_{i}) = \frac{1}{n_{e}} \sum_{k=1}^{n_{e}} P(\mu_{i}|x_{k})$$

$$\mu_{i} = \frac{\sum_{k=1}^{n_{e}} x_{k} P(\mu_{i}|x_{k})}{\sum_{k=1}^{n_{e}} P(\mu_{i}|x_{k})}$$

$$\sigma_{i}^{2} = \frac{\sum_{k=1}^{n_{e}} (x_{k} - \mu_{i})^{2} P(\mu_{i}|x_{k})}{\sum_{k=1}^{n_{e}} P(\mu_{i}|x_{k})}$$

Mixtures of Gaussians (cont.)

- K-means clustering \prec EM for mixtures of Gaussians
- Mixtures of Gaussians \prec Bayes nets
- Also good for estimating joint distribution of continuous variables

Mixture Models for Documents

• Learn simultaneously P(w | topic), P(topic | doc)

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Kinds of Clustering

- Sequential
 - Fast
 - Results depend on data order
- Cost Optimization
 - Fixed number of clusters (typically)
 - Probabilistic models
- Hierarchical
 - Start with many clusters
 - join clusters at each step

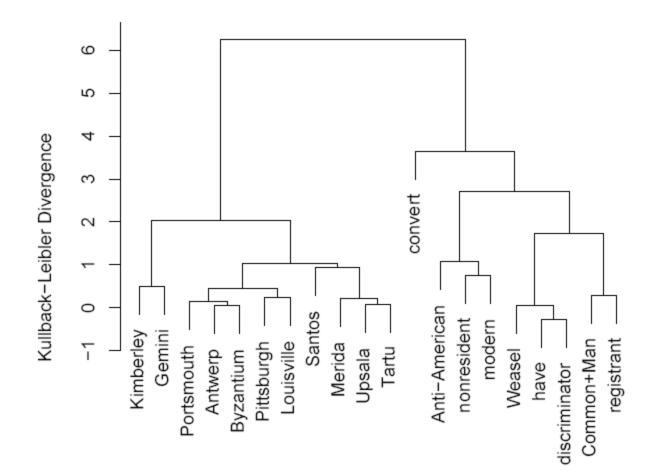
Greedy Hierarchical Clustering

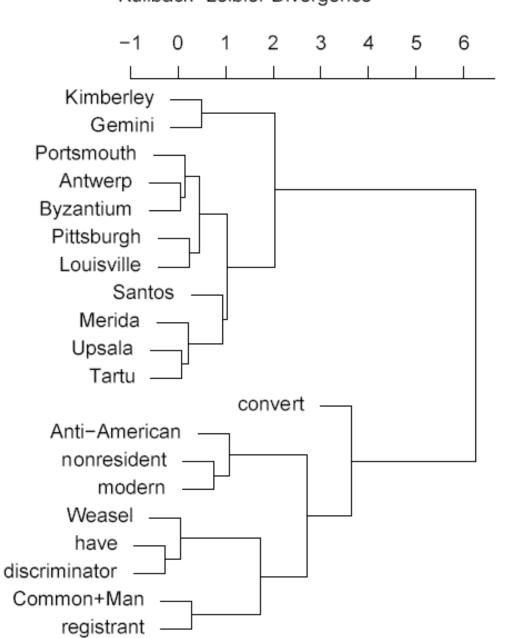
- Initialize one cluster for each data point
- Until *done*
 - Merge the two *nearest* clusters

Hierarchical Clustering on Strings

• Features = *contexts* in which strings appear

10 cities and 10 people

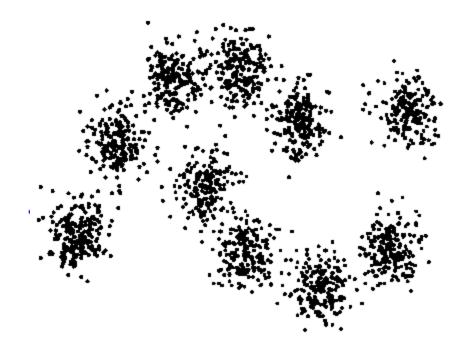




10 cities and 10 people

Kullback-Leibler Divergence

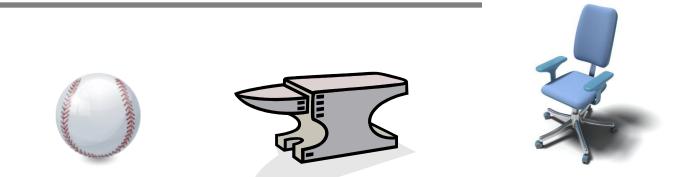
Classic Example: Half Moons



From Batra et al., <u>http://www.cs.cmu.edu/~rahuls/pub/bmvc2008-clustering-rahuls.pdf</u>

Summary

- Algorithms:
 - Sequential clustering
 - Requires key distance threshold, sensitive to data order
 - K-means clustering
 - Requires # of clusters, sensitive to initial conditions
 - Special case of mixture modeling
 - Greedy agglomerative clustering
 - Naively takes O(n^2) runtime
 - Hard to tell when you're "done"



Throw(person, x)

Weight(x) < 50lbs ^ Max_dim(x) < 20ft ^ ... ^ =>Throw(person, x)

Weight(baseball) = 5oz ^.... => Throw(person, baseball)

"throwable objects such as"

Web Images Maps Shopping Books More - Search tools	Web	Images	Maps	Shopping	Books	More -	Search tools	
--	-----	--------	------	----------	-------	--------	--------------	--

About 5,050 results (0.19 seconds)

Patent US5984812 - Grippable surface for throwable object - Google ... www.google.com/patents/US5984812

This invention relates to a grippable surface for **throwable objects such as** a football, baseball, etc. which enhances the ease with which the object may be ...

[PDF] Name Juggle.pdf - GOAL Consulting

www.goalconsulting.org/page3/files/Name%20Juggle.pdf <

Materials: Many soft **throwable objects such as** fleece balls, wadded up pieces of paper, Nerf[™] balls. Level: Grades K and higher. Suggested Procedure. 1.

Cities such as X

 \mathbf{Y} , mayor of \mathbf{X}

- The Web makes hard AI problems easier
- ...but

Link to word vector demo: <u>tp://radimrehurek.com/2014/02/word2vec-tutorial/#app</u>