Active Learning

Active Learning: Motivation

Active Learning: Motivation

Active Learning: Motivation

Better training examples

Better performance

 "Days on which my friend Aldo enjoys his favorite water sport"

INPUT						
Sky	Temp	Humid	Wind	Water	Forecast	C(x)
sunny	warm	normal	strong	warm	same	1
sunny	warm	high	strong	warm	same	1
rainy	cold	high	strong	warm	change	0
sunny	warm	high	strong	cool	change	1

INPUT							
Sky	Temp	Humid	Wind	Water	Forecast	C(x)	
sunny	warm	normal	strong	warm	same	1	
sunny	warm	high	strong	warm	same	1	
rainy	cold	high	strong	warm	change	0	
sunny	warm	high	strong	cool	change	1	

Learning a function

- Consider a hypothesis space H of conjunctions of constraints on attributes
- Each constraint can be:
 - A specific value : e.g. *Water=Warm*
 - A don't-care value : e.g. Water=?
- Example hypotheses:

Sky	Тетр	Humid	Wind	Water	Forecast
sunny	?	?	?	?	?
?	warm	?	?	?	same

Two options

- Passive learning:
 - Watch Aldo and record what he does
- Problem: it takes a long time for every combination to come about => inaccuracy
- Alternative: *active* learning
 - Ask Aldo what he thinks about particular weather configurations

INPUT							
Sky	Temp	Humid	Wind	Water	Forecast	C(x)]
sunny	warm	normal	strong	warm	same	1	-
sunny	warm	high	strong	warm	same	1	
rainy	cold	high	strong	warm	change	0	
sunny	warm	high	strong	cool	change	1	

New training examples:

rainy		normal	strong	warm	change	0	
rainy	warm	normal	strong	warm	same	0 0 1	
		Learn S	ky=?	-			

Simpler Example: threshold function

Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier (threshold function): $h_w(x) = 1$ if x > w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps

Random choice

• Requires O(n) training data to find underlying classifier

Binary search for transition between 0 and 1

• Requires O(log n) training data to find underlying classifier

Slide from Alex Shyr, Barbara Engelhardt

Questions!

- How do we choose which questions to ask?
- Lots of possibilities
- Today:
 - Entropy
 - Entropy plus "representativeness"
 - Query by committee

Entropy plus representativeness

- Entropy Approach: query least certain examples
 - Don't waste time querying things we already know
 - But what's a problem with this?

Alternative: *sample* instances weighted by entropy

Query by Committee

- Queries an example based on the degree of disagreement between committee of classifiers
 - Ensemble of classifiers/hypotheses (e.g. bagging, boosting)

Slide from Alex Shyr, Barbara Engelhardt

[Seung et al. 1992, Freund et al. 1997]

Query by Committee Application

 Used naïve Bayes model for text classification in a Bayesian learning setting (20 Newsgroups dataset)

[McCallum & Nigam, 1998]

Another direction: Active Learning with multiple sources

• Mechanical Turk, ESP game

- Multiple, heterogeneous annotators

- Input can be adversarial
 - Novel operation: query annotators for most certain examples
 - Why? Gauge annotator quality
- Exploration vs. exploitation trade-off