
Machine Learning

Neural Networks

(slides from Domingos, Pardo, others)



Reading

• For this week, 
– Chapter 4: Neural Networks (Mitchell, 1997)
– See Canvas

• For subsequent weeks:
– Scaling Learning Algorithms toward AI
– Learning Deep Architectures for AI

http://www.iro.umontreal.ca/%7Elisa/pointeurs/bengio+lecun_chapter2007.pdf
http://www.iro.umontreal.ca/%7Ebengioy/papers/ftml_book.pdf


Human Brain



Neurons



Input-Output Transformation
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Human Learning

• Number of neurons: ~ 1011

• Connections per neuron: ~ 103  to 105

• Neuron switching time: ~ 0.001 second
• Scene recognition time: ~ 0.1 second

100 inference steps doesn’t seem much



Machine Learning Abstraction



Artificial Neural Networks

• Typically, machine learning ANNs are very
artificial, ignoring:
– Time
– Space
– Biological learning processes

• More realistic neural models exist
– Hodgkin & Huxley (1952) won a Nobel prize 

for theirs (in 1963)
• Nonetheless, very artificial ANNs have 

been useful in many ML applications



Perceptrons

• The “first wave” in neural networks
• Big in the 1960’s

– McCulloch & Pitts (1943), Woodrow & Hoff 
(1960), Rosenblatt (1962)



Perceptrons

• Problem def:
– Let f be a target function from 

X = <x1, x2, …> where xi ∈{0, 1}
to
y ∈{0, 1}

– Given training data {(X1, y1), (X2, y2)…}
• Learn h (X ), an approximation of f (X )



A single perceptron
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Logical Operators
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Learning Weights

• Perceptron Training Rule
• Gradient Descent
• (other approaches: Genetic Algorithms)
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Perceptron Training Rule

• Weights modified for each training example 
• Update Rule:
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Perception Training for NOT

Initialize:
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What weights make XOR?

• No combination of weights works
• Perceptrons can only represent linearly 

separable functions
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Linear Separability
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Linear Separability
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Perceptron Training Rule

• Converges to the correct classification IF
– Cases are linearly separable
– Learning rate is slow enough
– Proved by Minsky and Papert in 1969

Killed widespread interest in perceptrons till the 80’s



XOR
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What’s wrong with perceptrons?

• You can always plug multiple perceptrons 
together to calculate any function.

• BUT…who decides what the weights are?
– Assignment of error to parental inputs 

becomes a problem….



Perceptrons use a step function
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• Small changes in inputs -> either no 
change or large change in output.



Solution: Differentiable Function
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• Varying any input a little creates a 
perceptible change in the output

• We can now characterize how error
changes wi even in multi-layer case



Measuring error for linear units

• Output Function 

• Error Measure:
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Gradient Descent

Gradient:
Training rule:



Gradient Descent Rule
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Gradient Descent for Multiple Layers
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Gradient Descent vs. Perceptrons

• Perceptron Rule & Threshold Units
– Learner converges on an answer ONLY IF 

data is linearly separable
– Can’t assign proper error to parent nodes 

• Gradient Descent
– (locally) Minimizes error even if examples are 

not linearly separable
– Works for multi-layer networks

• But…linear units only make linear decision surfaces 
(can’t learn XOR even with many layers)

– And the step function isn’t differentiable…



A compromise function
• Perceptron

• Linear

• Sigmoid (Logistic)
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The sigmoid (logistic) unit
• Has differentiable function

– Allows gradient descent
• Can be used to learn non-linear functions
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Logistic function
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Neural Network Model
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Getting an answer from a NN
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Getting an answer from a NN



Getting an answer from a NN
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Minimizing the Error
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Differentiability is key!

• Sigmoid is easy to differentiate

• For gradient descent on multiple layers, a 
little dynamic programming can help:
– Compute errors at each output node
– Use these to compute errors at each hidden node
– Use these to compute weight gradient
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The Backpropagation Algorithm
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Learning Weights
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The fine print

• Don’t implement back-propagation
– Use a package
– Second-order or variable step-size 

optimization techniques exist
• Feature normalization

– Typical to normalize inputs to lie in [0,1]
• (and outputs must be normalized)

• Problems with NN training:
– Slow training times (though, getting better)
– Local minima



Minimizing the Error
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Expressive Power of ANNs

• Universal Function Approximator:
– Given enough hidden units, can approximate 

any continuous function f
• Need 2+ hidden units to learn XOR

• Why not use millions of hidden units?
– Efficiency (training is slow)
– Overfitting



Overfitting

Overfitted ModelReal Distribution



Combating Overfitting in Neural Nets

• Many techniques

• Two popular ones:
– Early Stopping (most popular)

• Use “a lot” of hidden units
• Just don’t over-train

– Cross-validation
• Test different architectures to choose “right” 

number of hidden units



Early Stopping

b = training set

a = validation set

Overfitted model

error

Epochs

min (∆  error)

errora

errorb

Stopping criterion



Learning Rate?

• A “knob” you twist empirically
– Important

• One popular option: look for validation set 
acc to decrease/stabilize, then halve 
learning rate



Modern Neural Networks (Deep Nets)

Local minima in large networks is less of an issue

Early stopping is useful, but so is initializing at zero 
and training until almost zero training error

count on stochastic gradient descent to 
perform “implicit regularization”

Also: Dropout

Many layers are now common
And specific structure: convolution, max pooling



Summary of Neural Networks

When are Neural Networks useful?
– Instances represented by attribute-value pairs

• Particularly when attributes are real valued
– The target function is

• Discrete-valued
• Real-valued
• Vector-valued

– Training examples may contain errors
– Fast evaluation times are necessary

When not?
– Fast training times are necessary
– Understandability of the function is required



Summary of Neural Networks

Non-linear regression technique that is trained 
with gradient descent.

Question: How important is the biological 
metaphor?



Other Topics in Neural Nets

• Batch Move vs. stochastic
• Auto-Encoders
• Neural Networks on Silicon



Stochastic vs. Batch Mode
Stochastic Gradient Descent



Incremental vs. Batch Mode

• In Batch Mode we minimize:

• Same as computing:

• Then setting  𝑤𝑤 = 𝑤𝑤 + Δ𝑤𝑤𝐷𝐷

Δ𝑤𝑤𝐷𝐷 = �
𝑑𝑑∈𝐷𝐷

Δ𝑤𝑤𝑑𝑑



Advanced Topics in Neural Nets

• Batch Move vs. incremental
• Auto-Encoders
• Neural Networks on Silicon



Hidden Layer Representations

• Input->Hidden Layer mapping:
– representation of input vectors tailored to the 

task
• Can also be exploited for dimensionality 

reduction
– Form of unsupervised learning in which we 

output a “more compact” representation of 
input vectors

– <x1, …,xn> -> <x’1, …,x’m> where m < n
– Useful for visualization, problem simplification, 

data compression, etc.



Dimensionality Reduction

Model: Function to learn:



Dimensionality Reduction: Example



Dimensionality Reduction: Example



Dimensionality Reduction: Example



Dimensionality Reduction: Example



Advanced Topics in Neural Nets

• Batch Move vs. incremental
• Auto-encoders
• Neural Networks on Silicon



Neural Networks on Silicon

• Currently:

Simulation of continuous device 
physics (neural networks)

Digital computational model 
(thresholding)

Continuous device physics 
(voltage)

Why not 
skip this?



Example: Silicon Retina

Simulates function 
of biological retina

Single-transistor 
synapses adapt to 
luminance, 
temporal contrast

Modeling retina 
directly on chip 
=> requires 100x 
less power!



Example: Silicon Retina

• Synapses modeled with single transistors



Luminance Adaptation



Comparison with Mammal Data

• Real:

• Artificial:



• Graphics and results taken from:



General NN learning in silicon?

• People seem more excited about / 
satisfied with GPUs

• But, that could change
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