
Machine Learning

Neural Networks

(slides from Domingos, Pardo, others)

Reading

• For this week,
– Chapter 4: Neural Networks (Mitchell, 1997)
– See Canvas

• For subsequent weeks:
– Scaling Learning Algorithms toward AI
– Learning Deep Architectures for AI

http://www.iro.umontreal.ca/%7Elisa/pointeurs/bengio+lecun_chapter2007.pdf
http://www.iro.umontreal.ca/%7Ebengioy/papers/ftml_book.pdf

Human Brain

Neurons

Input-Output Transformation

Input
Spikes

Output
Spike

(Excitatory Post-Synaptic Potential)

Spike (= a brief pulse)

Human Learning

• Number of neurons: ~ 1011

• Connections per neuron: ~ 103 to 105

• Neuron switching time: ~ 0.001 second
• Scene recognition time: ~ 0.1 second

100 inference steps doesn’t seem much

Machine Learning Abstraction

Artificial Neural Networks

• Typically, machine learning ANNs are very
artificial, ignoring:
– Time
– Space
– Biological learning processes

• More realistic neural models exist
– Hodgkin & Huxley (1952) won a Nobel prize

for theirs (in 1963)
• Nonetheless, very artificial ANNs have

been useful in many ML applications

Perceptrons

• The “first wave” in neural networks
• Big in the 1960’s

– McCulloch & Pitts (1943), Woodrow & Hoff
(1960), Rosenblatt (1962)

Perceptrons

• Problem def:
– Let f be a target function from

X = <x1, x2, …> where xi ∈{0, 1}
to
y ∈{0, 1}

– Given training data {(X1, y1), (X2, y2)…}
• Learn h (X), an approximation of f (X)

A single perceptron

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

w1

w3

w2

w4

w5

x1

x2

x3

x4

x5

x0

w0

In
pu

ts
Bias (x0 =1,always)

Logical Operators

-0.8

0.5

0.5

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

x0

x1

x2

AND

-0.3

0.5

0.5

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

x0

x1

x2

OR

0.1

-1.0

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

x0

x1

NOT

Learning Weights

• Perceptron Training Rule
• Gradient Descent
• (other approaches: Genetic Algorithms)

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

?
x0

?
x1

?x2

Perceptron Training Rule

• Weights modified for each training example
• Update Rule:

iii www ∆+←

ii xotw)(−=∆ η
where

learning
rate

target
value

perceptron
output

input
value

Perception Training for NOT

Initialize:

Bryan Pardo, Machine Learning: EECS 349 Fall 2009 15

iii www ∆+←
ii xotw)(−=∆ η

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

x0

x1

NOT

Work
Start End

w1

w0

0, 10 =ww

What weights make XOR?

• No combination of weights works
• Perceptrons can only represent linearly

separable functions

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

?
x0

?
x1

?
x2

Linear Separability

x1

x2

+−

+ +

OR

Linear Separability

x1

x2

−−

− +

AND

Linear Separability

x1

x2

+−

+ −

XOR

Perceptron Training Rule

• Converges to the correct classification IF
– Cases are linearly separable
– Learning rate is slow enough
– Proved by Minsky and Papert in 1969

Killed widespread interest in perceptrons till the 80’s

XOR

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

0
x0

0.6x1

0.6
x2

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

0
x0

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

0
x0

XOR1

1

-0.6

-0.6

What’s wrong with perceptrons?

• You can always plug multiple perceptrons
together to calculate any function.

• BUT…who decides what the weights are?
– Assignment of error to parental inputs

becomes a problem….

Perceptrons use a step function

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwσ

?
x0

?
x1

?
x2

Perceptron Threshold
Step function

• Small changes in inputs -> either no
change or large change in output.

Solution: Differentiable Function

∑
=

=
n

i
ii xw

0
σ

?
x0

?
x1

?
x2

Simple linear function

• Varying any input a little creates a
perceptible change in the output

• We can now characterize how error
changes wi even in multi-layer case

Measuring error for linear units

• Output Function

• Error Measure:

xwx
⋅=)(σ

∑
∈

−≡
Dd

dd otwE 2)(
2
1)(

data target
value

linear unit
output

Gradient Descent

Gradient:
Training rule:

Gradient Descent Rule

∑
∈

−
∂
∂

≡
∂
∂

Dd
dd

ii

ot
ww

E 2)(
2
1

∑
∈

−−=
Dd

didd xot))((,

∑
∈

−+←
Dd

diddii xotww ,)(η
Update Rule:

Gradient Descent for Multiple Layers

x0

x1

x2

x0

x0

XOR?
∑

=

=
n

i
ii xw

0
σ

∑
=

=
n

i
ii xw

0
σ

∑
=

=
n

i
ii xw

0
σ

ijw

We can compute:

=
∂
∂

ijw
E

Gradient Descent vs. Perceptrons

• Perceptron Rule & Threshold Units
– Learner converges on an answer ONLY IF

data is linearly separable
– Can’t assign proper error to parent nodes

• Gradient Descent
– (locally) Minimizes error even if examples are

not linearly separable
– Works for multi-layer networks

• But…linear units only make linear decision surfaces
(can’t learn XOR even with many layers)

– And the step function isn’t differentiable…

A compromise function
• Perceptron

• Linear

• Sigmoid (Logistic)

>= ∑
=

 else 0

0 if 1
0

n

i
ii xwoutput

∑
=

==
n

i
ii xwnetoutput

0

nete
netoutput −+

==
1

1)(

σ

The sigmoid (logistic) unit
• Has differentiable function

– Allows gradient descent
• Can be used to learn non-linear functions

?
x1

?
x2

∑−
=+

= n

i
ii xw

e 01

1

σ

Logistic function

Inputs

Coefficients

Output

Independent
variables

Prediction

Age 34

1Gender

Stage 4

.5

.8

.4
0.6

Σ
“Probability
of beingAlive”

∑−
=+

= n

i
ii xw

e 01

1

σ

Neural Network Model

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

WeightsHidden
Layer

“Probability
of beingAlive”

0.6
Σ

Σ

.4

.2
Σ

Getting an answer from a NN

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.6

.5

.8

.1

.7

WeightsHidden
Layer

“Probability
of beingAlive”

0.6
Σ

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.5

.8
.2

.3

.2

WeightsHidden
Layer

“Probability
of beingAlive”

0.6
Σ

Getting an answer from a NN

Getting an answer from a NN

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

1Gender

Stage 4

.6
.5

.8
.2

.1

.3
.7

.2

WeightsHidden
Layer

“Probability
of beingAlive”

0.6
Σ

Minimizing the Error

winitial wtrained

initial error

final error

Error surface

positive change

negative derivative

local minimum

Differentiability is key!

• Sigmoid is easy to differentiate

• For gradient descent on multiple layers, a
little dynamic programming can help:
– Compute errors at each output node
– Use these to compute errors at each hidden node
– Use these to compute weight gradient

))(1()()(

yy
y
y σσσ

−⋅=
∂

∂

The Backpropagation Algorithm

jikjiji

ji

k
outputsk

hkhhh

h

kkkkk

k

u

xδww
w

δwooδ
δ

otooδ
δk

u
 ox

t,x

η+←

−←

−−←

∑
∈

ight network weeach Update.4

)1(
 error term its calculate h,unit hidden each For .3

))(1(
 error term its calculate ,unit output each For 2.

network in the unit every for
output thecompute andnetwork the to instanceInput 1.

 example, ninginput traieach For

𝑖𝑖

Learning Weights

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

1Gender

Stage 4

.6
.5

.8
.2

.1

.3
.7

.2

WeightsHidden
Layer

“Probability
of beingAlive”

0.6
Σ

The fine print

• Don’t implement back-propagation
– Use a package
– Second-order or variable step-size

optimization techniques exist
• Feature normalization

– Typical to normalize inputs to lie in [0,1]
• (and outputs must be normalized)

• Problems with NN training:
– Slow training times (though, getting better)
– Local minima

Minimizing the Error

winitial wtrained

initial error

final error

Error surface

positive change

negative derivative

local minimum

Expressive Power of ANNs

• Universal Function Approximator:
– Given enough hidden units, can approximate

any continuous function f
• Need 2+ hidden units to learn XOR

• Why not use millions of hidden units?
– Efficiency (training is slow)
– Overfitting

Overfitting

Overfitted ModelReal Distribution

Combating Overfitting in Neural Nets

• Many techniques

• Two popular ones:
– Early Stopping (most popular)

• Use “a lot” of hidden units
• Just don’t over-train

– Cross-validation
• Test different architectures to choose “right”

number of hidden units

Early Stopping

b = training set

a = validation set

Overfitted model

error

Epochs

min (∆ error)

errora

errorb

Stopping criterion

Learning Rate?

• A “knob” you twist empirically
– Important

• One popular option: look for validation set
acc to decrease/stabilize, then halve
learning rate

Modern Neural Networks (Deep Nets)

Local minima in large networks is less of an issue

Early stopping is useful, but so is initializing at zero
and training until almost zero training error

count on stochastic gradient descent to
perform “implicit regularization”

Also: Dropout

Many layers are now common
And specific structure: convolution, max pooling

Summary of Neural Networks

When are Neural Networks useful?
– Instances represented by attribute-value pairs

• Particularly when attributes are real valued
– The target function is

• Discrete-valued
• Real-valued
• Vector-valued

– Training examples may contain errors
– Fast evaluation times are necessary

When not?
– Fast training times are necessary
– Understandability of the function is required

Summary of Neural Networks

Non-linear regression technique that is trained
with gradient descent.

Question: How important is the biological
metaphor?

Other Topics in Neural Nets

• Batch Move vs. stochastic
• Auto-Encoders
• Neural Networks on Silicon

Stochastic vs. Batch Mode
Stochastic Gradient Descent

Incremental vs. Batch Mode

• In Batch Mode we minimize:

• Same as computing:

• Then setting 𝑤𝑤 = 𝑤𝑤 + Δ𝑤𝑤𝐷𝐷

Δ𝑤𝑤𝐷𝐷 = �
𝑑𝑑∈𝐷𝐷

Δ𝑤𝑤𝑑𝑑

Advanced Topics in Neural Nets

• Batch Move vs. incremental
• Auto-Encoders
• Neural Networks on Silicon

Hidden Layer Representations

• Input->Hidden Layer mapping:
– representation of input vectors tailored to the

task
• Can also be exploited for dimensionality

reduction
– Form of unsupervised learning in which we

output a “more compact” representation of
input vectors

– <x1, …,xn> -> <x’1, …,x’m> where m < n
– Useful for visualization, problem simplification,

data compression, etc.

Dimensionality Reduction

Model: Function to learn:

Dimensionality Reduction: Example

Dimensionality Reduction: Example

Dimensionality Reduction: Example

Dimensionality Reduction: Example

Advanced Topics in Neural Nets

• Batch Move vs. incremental
• Auto-encoders
• Neural Networks on Silicon

Neural Networks on Silicon

• Currently:

Simulation of continuous device
physics (neural networks)

Digital computational model
(thresholding)

Continuous device physics
(voltage)

Why not
skip this?

Example: Silicon Retina

Simulates function
of biological retina

Single-transistor
synapses adapt to
luminance,
temporal contrast

Modeling retina
directly on chip
=> requires 100x
less power!

Example: Silicon Retina

• Synapses modeled with single transistors

Luminance Adaptation

Comparison with Mammal Data

• Real:

• Artificial:

• Graphics and results taken from:

General NN learning in silicon?

• People seem more excited about /
satisfied with GPUs

• But, that could change

	Machine Learning
	Reading
	Human Brain
	Neurons
	Input-Output Transformation
	Human Learning
	Machine Learning Abstraction
	Artificial Neural Networks
	Perceptrons
	Perceptrons
	A single perceptron
	Logical Operators
	Learning Weights
	Perceptron Training Rule
	Perception Training for NOT
	What weights make XOR?
	Linear Separability
	Linear Separability
	Linear Separability
	Perceptron Training Rule
	XOR
	What’s wrong with perceptrons?
	Perceptrons use a step function
	Solution: Differentiable Function
	Measuring error for linear units
	Gradient Descent
	Gradient Descent Rule
	Gradient Descent for Multiple Layers
	Gradient Descent vs. Perceptrons
	A compromise function
	The sigmoid (logistic) unit
	Logistic function
	Neural Network Model
	Getting an answer from a NN
	Getting an answer from a NN
	Getting an answer from a NN
	Minimizing the Error
	Differentiability is key!
	The Backpropagation Algorithm
	Learning Weights
	The fine print
	Minimizing the Error
	Expressive Power of ANNs
	Overfitting
	Combating Overfitting in Neural Nets
	Early Stopping
	Learning Rate?
	Modern Neural Networks (Deep Nets)
	Summary of Neural Networks
	Summary of Neural Networks
	Other Topics in Neural Nets
	Stochastic vs. Batch Mode
	Incremental vs. Batch Mode
	Advanced Topics in Neural Nets
	Hidden Layer Representations
	Dimensionality Reduction
	Dimensionality Reduction: Example
	Dimensionality Reduction: Example
	Dimensionality Reduction: Example
	Dimensionality Reduction: Example
	Advanced Topics in Neural Nets
	Neural Networks on Silicon
	Example: Silicon Retina
	Example: Silicon Retina
	Luminance Adaptation
	Comparison with Mammal Data
	Slide Number 67
	General NN learning in silicon?

