Machine Learning

Neural Networks

(slides from Domingos, Pardo, others)

Reading

e For this week,
— Chapter 4: Neural Networks (Mitchell, 1997)
— See Canvas

e For subsequent weeks:

— Scaling Learning Algorithms toward Al
— Learning Deep Architectures for Al

http://www.iro.umontreal.ca/%7Elisa/pointeurs/bengio+lecun_chapter2007.pdf
http://www.iro.umontreal.ca/%7Ebengioy/papers/ftml_book.pdf

Human Brain

7
-
o
S
-
Q

Z

Input-Output Transformation

Dendrites

InpUt ‘A@\t/ (Al immbonsd e
Spikes AN\ [P Axon hillock s R
N

7/ \L_—7 Output
() Wo” Spike
r >—— ()
”fﬁ X N
& Fo f\ Spike (= a brief pulse)
A
|~
e —
Graded EPSP Trigger: Conducted oll-or-none spike
(Excitatory Post-Synaptic Potential) @!!-or-none (conduction of spike to next cell)

spike initiated

Human Learning

e Number of neurons: ~ 1011

e Connections per neuron: ~ 103 to 10°

e Neuron switching time: —~ 0.001 second
e Scene recognition time: ~ 0.1 second

100 inference steps doesn’t seem much

Machine Learning Abstraction

Artificial Neural Networks

e Typically, machine learning ANNs are very
artificial, ignoring:
— Time
— Space
— Biological learning processes
e More realistic neural models exist

— Hodgkin & Huxley (1952) won a Nobel prize
for theirs (in 1963)

 Nonetheless, very artificial ANNs have
been useful iIn many ML applications

Perceptrons

e The “first wave” In neural networks

e Big In the 1960’s

— McCulloch & Pitts (1943), Woodrow & Hoff
(1960), Rosenblatt (1962)

Perceptrons

e Problem def:

— Let fbe a target function from
X= <Xy, X, ..=> where x; {0, 1}
{0
y {0, 1}
— Given training data {(X3, J41), (X, J5)...}
e Learn /7 (X), an approximation of 7(X)

A single perceptron

@ Bias (X, =1,always)

(

1if anwixi >0
1=0

0 else

Logical Operators

AND

o _)Lif iZ:O:Wixi >0
0 else

J1if anwixi>0
a i=0

0 else

o _)Lif iZ:O:Wixi >0
0 else

Learning Weights

e Perceptron Training Rule
e Gradient Descent
e (other approaches: Genetic Algorithms)

Perceptron Training Rule

e Weights modified for each training example
e Update Rule:

W, <— W, + AW
where

AW, =n(t—0)x

[N

learning target perceptron input
rate value output value

Perception Training for NOT
Initialize:
W,, W, =0

W, <— W. + AW,
AW, =n(t—0)x

Work

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

15

What weights make XOR?

e No combination of weights works

e Perceptrons can only represent linearly
separable functions

Linear Separability

Linear Separability

Linear Separability

Perceptron Training Rule

e Converge oct classification IF

— Cases are linearly separable

— Learning rate Isgslow enough
— Proved by MinsHy and Papert in 1969

Killed widespread interest in perceptrons till the 80’s

XOR

L _JLif iZ:O:Wixi >0
0 else

; XOR
o _)Lif iz—o:WiXi >0

0 else

L _JLif iZ:O:Wixi >0
0 else

What’s wrong with perceptrons?

e You can always plug multiple perceptrons
together to calculate any function.
e BUT...who decides what the weights are?

— Assignment of error to parental inputs
becomes a problem....

Perceptrons use a step function

 Perceptron Threshold
Step function

i

 Small changes in inputs -> either no
change or large change in output.

Solution: Differentiable Function

. Simple linear function

—

e Varying any input a little creates a
perceptible change in the output

e \WWe can now characterize how error
changes w; even In multi-layer case

Measuring error for linear units

e Qutput Function

o(X) =W-X
e Error Measure:

E(W)——Z(t ~0y)°
d D
AN
data target linear unit
value output

Gradient Descent

0 Training rule:
Gradient: AT = —V E[i
[OF OF OF

[811;[]’ dw;’ &w”J Aw; = —n

OF
Ow;

V Ei]

Gradient Descent Rule

OW. OW. 2 4op
— Z(td —04)(—X;)
deD
Update Rule:

W < W, +772(td — 04)X ¢
deD

Gradient Descent for Multiple Layers

We can compute:

E

J

Gradient Descent vs. Perceptrons

e Perceptron Rule & Threshold Units

— Learner converges on an answer ONLY IF
data Is linearly separable

— Can't assign proper error to parent nodes

e Gradient Descent

— (locally) Minimizes error even if examples are
not linearly separable

— Works for multi-layer networks

e But...linear units only make linear decision surfaces
(can’t learn XOR even with many layers)

— And the step function isn’t differentiable...

A compromise function

e Perceptron -

output = - 1 if ;Wixi >0 I

0 else

e Linear n
output = net = > WX, |
i=0 '

e Sigmoid (Logistic)

1

output = o(net) =
1+e

—net

The sigmoid (logistic) unit

e Has differentiable function
— Allows gradient descent

e Can be used to learn non-linear functions

Logistic function

Output
0.6
“Probability
of beingAlive”
Stage a
Independent Coefficients Prediction
variables 1

Neural Network Model

Output

0.6

“Probability
of beingAlive”

Dependent

Independent \Weights Hidden Weights variable

variables Layer
Prediction

Getting an answer from a NN

Inputs
Age Output
0.6
Gender
“Probability
of beingAlive”
Stage
Independent Weights ~ Hidden \eights \?;rl?gg?eem

variables Layer
Prediction

Getting an answer from a NN

Inputs
Age Output
0.6
Gender
“Probability
of beingAlive”
Stage
Independent Weights Hidden Weights \[/)aerFi)grblldeent

variables Layer
Prediction

Getting an answer from a NN

Inputs
Age \ Output
5
7‘\ L— 0.6
Gender »
>‘/8 “Probability
' of beingAlive”
Stage
Independent Weights ~ Hidden \eights \?;rl?ggﬁeem

variables Layer
Prediction

Minimizing the Error

initial error
Error surface

~

negative derivative

final error

local minimum

Wlnltlal Wtralned

—
positive change

Differentiability 1s key!

e Sigmoid Is easy to differentiate

oo (Y)
oy

=o(y)-1-o(y))

e For gradient descent on multiple layers, a
little dynamic programming can help:
— Compute errors at each output node
— Use these to compute errors at each hidden node
— Use these to compute weight gradient

The Backpropagation Algorithm

For each input training example, (%,{)

1. Input instance X to the network and compute the output o,
for every unit u in the network

2. For each output unit k, calculate its error term g,
5k 0 (1_ Ok)(tk - Ok)

3. For each hidden unit h, calculate its error term ¢,

Oy <= 0,(1-0;) thkék

k eoutputs

4.Update each network weight w,

Wj; <= W + no, X;;

Learning Weights

Inputs
Output
e \ utpu
5
%\ — 0.6
Gender)3
w “Probability
- of beingAlive”
Stage —
_ _ Dependent
Independent \Weights Hidden Weights V;rl?gbm

variables Layer
Prediction

The fine print

e Don’'t Iimplement back-propagation
— Use a package

— Second-order or variable step-size
optimization techniques exist

e Feature normalization
— Typical to normalize inputs to lie in [0,1]
e (and outputs must be normalized)
e Problems with NN training:
— Slow training times (though, getting better)

LAl mauiniimana
LUV TTTITHITTICA

Minimizing the Error

initial error
Error surface

~

negative derivative

final error

local minimum

Wlnltlal Wtralned

—
positive change

Expressive Power of ANNs

e Universal Function Approximator:

— Given enough hidden units, can approximate
any continuous function 7

e Need 2+ hidden units to learn XOR

 Why not use millions of hidden units?
— Efficiency (training is slow)
— Overfitting

Overfitting

Real Distribution Overfitted Model

(.

Combating Overfitting in Neural Nets

e Many technigques

e Two popular ones:
— Early Stopping (most popular)
e Use “a lot” of hidden units
e Just don’t over-train

— Cross-validation

e Test different architectures to choose “right”
number of hidden units

Early Stopping

ererr

Epobhs

>Stopping criterion

Learning Rate?

e A “knob” you twist empirically
— Important

e One popular option: look for validation set
acc to decrease/stabllize, then halve
learning rate

Modern Neural Networks (Deep Nets)

Local minima in large networks is less of an issue

Early stopping is useful, but so is initializing at zero
and training until almost zero training error

count on stochastic gradient descent to
perform “implicit regularization”

Also: Dropout

Many layers are now common
And specific structure: convolution, max pooling

Summary of Neural Networks

When are Neural Networks useful?

— Instances represented by attribute-value pairs
e Particularly when attributes are real valued

— The target function is
e Discrete-valued
e Real-valued
e Vector-valued

— Training examples may contain errors
— Fast evaluation times are necessary

When not?

— Fast training times are necessary
— Understandability of the function is required

Summary of Neural Networks

Non-linear regression technique that is trained
with gradient descent.

Question: How important is the biological
metaphor?

Other Topics in Neural Nets

e Batch Move vs. stochastic
e Auto-Encoders
e Neural Networks on Silicon

Stochastic vs. Batch Mode

Stochastic Gradient Descent
Do until satistied

e For each training example d in D

1. Compute the gradient V E [i7]
2.1 + w — nV Ey[]

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|w]

2.0« W — nV Ep|id]

Incremental vs. Batch Mode

e |[n Batch Mode we minimize:

Eplw] = 5 {%D(t{; — 04)°

« Same as computing: Awp = z Aw
deD

e Then setting w = w + Awp

Advanced Topics in Neural Nets

e Auto-Encoders

Hidden Layer Representations

e |Input->Hidden Layer mapping:
— representation of input vectors tailored to the
task
e Can also be exploited for aimensionality
reauction

— Form of unsupervised learning in which we
output a “more compact” representation of
Input vectors

— <Xy, X > <Xy, X, > Where m<

— Useful for visualization, problem simplification,
data compression, etc.

Dimensionality Reduction

Model:

Inputs

Outputs

Function to learn:

Input Qutput
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Dimensionality Reduction: Example

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Dimensionality Reduction: Example

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Sum of squared errors for each output unit

————— 1 1 1 T
= -'\:_- - _H-:h._.%h“-::-. —_—
B . '\.‘. \\\\ *\ —
A \
\
"‘III'.
\ _
,
, Rl T
N S
I I I e ettt

Dimensionality Reduction: Example

Hidden unit encoding for input 01000000

] T 1 T [——

B

- -
-
. ’
P '
P f
P ‘
- P . -
- r ‘
-]
- _."
= ¥
[}? B - . _
- - ’
.

0.6 ==

0.5 | \\ i
0.4 | \ _
0.3 } . 7

0.2 } — -

[}1 1 1 | 1

Dimensionality Reduction: Example

Weights from inputs to one hidden unit
4 T I I I i same_mers T

Advanced Topics in Neural Nets

e Neural Networks on Silicon

Neural Networks on Silicon

e Currently:

Digital computatior Why Not
(thresholdin skip this?

Example: Silicon Retina

Simulates function

of biological retina

Single-transistor

synapses adapt to

luminance,
temporal contrast

Modeling retina
directly on chip
=> requires 100x
less power!

L

OS2 " '
STROATR
N b ¥

OnS OffS
L onT OffT

WA

Example: Silicon Retina

e Synapses modeled with single transistors

vl

Inhibition

x|
O=

Excitation

Luminance Adaptation

spikes g1 spikes g1

spikes g spikes g

400
|
0 - — —
400 1_
O x z

Comparison with Mammal Data

e Real:

e Artificial:

b) caty
A o
100 D@SE & £ i
O ““ aﬂﬁ '-fDO : Cd ITIQ
— 0 a o @ © 321
wl A o |
o L % e o . *128
@D o a ©° & 51
.;'_: O F Y A ¢ Dl ll FY 20
%10 1 10 50 o 6.4
. O % contrast '
| N TTTT N TRV -
(c)
OonT
1000 5
ooedm
i ' e192
o ! ¢ 65
E]_|_|_|.|.u.u|_|_|_|J a 19
‘2100 1 10 50 «~ ¢
o % contrast
50

1 10 100
mean illumination (cd/m?)

e Graphics and results taken from:

INSTITUTE OF PHYSICS PUBLISHING JoumNAL OF NEURAL ENGINEERING

1. Meural Eng. 3 {2006) 257-267 doi: 10. 1088/ 1741 -2560,/3/4/002

A silicon retina that reproduces signals in
the optic nerve

Kareem A Zaghloul' and Kwabena Boahen”"

General NN learning in silicon?

e People seem more excited about /
satisfied with GPUs

e But, that could change

	Machine Learning
	Reading
	Human Brain
	Neurons
	Input-Output Transformation
	Human Learning
	Machine Learning Abstraction
	Artificial Neural Networks
	Perceptrons
	Perceptrons
	A single perceptron
	Logical Operators
	Learning Weights
	Perceptron Training Rule
	Perception Training for NOT
	What weights make XOR?
	Linear Separability
	Linear Separability
	Linear Separability
	Perceptron Training Rule
	XOR
	What’s wrong with perceptrons?
	Perceptrons use a step function
	Solution: Differentiable Function
	Measuring error for linear units
	Gradient Descent
	Gradient Descent Rule
	Gradient Descent for Multiple Layers
	Gradient Descent vs. Perceptrons
	A compromise function
	The sigmoid (logistic) unit
	Logistic function
	Neural Network Model
	Getting an answer from a NN
	Getting an answer from a NN
	Getting an answer from a NN
	Minimizing the Error
	Differentiability is key!
	The Backpropagation Algorithm
	Learning Weights
	The fine print
	Minimizing the Error
	Expressive Power of ANNs
	Overfitting
	Combating Overfitting in Neural Nets
	Early Stopping
	Learning Rate?
	Modern Neural Networks (Deep Nets)
	Summary of Neural Networks
	Summary of Neural Networks
	Other Topics in Neural Nets
	Stochastic vs. Batch Mode
	Incremental vs. Batch Mode
	Advanced Topics in Neural Nets
	Hidden Layer Representations
	Dimensionality Reduction
	Dimensionality Reduction: Example
	Dimensionality Reduction: Example
	Dimensionality Reduction: Example
	Dimensionality Reduction: Example
	Advanced Topics in Neural Nets
	Neural Networks on Silicon
	Example: Silicon Retina
	Example: Silicon Retina
	Luminance Adaptation
	Comparison with Mammal Data
	Slide Number 67
	General NN learning in silicon?

