Naïve Bayes Classifiers

Doug Downey

Northwestern EECS 349 Spring 2015

Naïve Bayes Classifiers

- Combines all ideas we've covered
 - Conditional Independence
 - Bayes' Rule
 - Statistical Estimation
- ...in a simple, yet accurate classifier
 - Classifier: Function f(x) from $X = \{ \langle x_1, ..., x_d \rangle \}$ to Class
 - E.g., X = {<GRE, GPA, Letters>}, Class = {yes, no, wait}

Probability => Classification (1 of 2)

Classification task

- Learn function $f(\mathbf{x})$ from $\mathbf{X} = \{\langle x_1, ..., x_d \rangle\}$ to Class
- Given: Examples $D = \{(x, y)\}$

Probabilistic Approach

- Learn P(Class = $y \mid X = x$) from D
- Given **x**, pick the maximally probable y

Probability => Classification (2 of 2)

More formally

- $f(x) = \arg\max_{y} P(Class = y \mid X = x, \theta_{MAP})$
- θ_{MAP} : MAP parameters, learned from data
 - ▶ That is, parameters of $P(Class = y \mid X = x)$
- ...we'll focus on using MAP estimate, but can also use ML or Bayesian
- Predict next coin flip? Instance of this problem
 - ➤ X = null
 - ▶ Given D= hhht...tht, estimate $P(\theta \mid D)$, find MAP
 - Predict Class = heads iff $\theta_{MAP} > \frac{1}{2}$

Example: Text Classification

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

SPAM

NOT SPAM?

Representation

- X = document
- Task: Estimate P(Class = {spam, non-spam} | X)
- Question: how to represent X?
 - Lots of possibilities, common choice: "bag of words"

Dear Sir/Madam, We are pleased to inform you of the result of the Lottery Winners	Sir	ı
International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-	Lott	ery I0
123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in	→ Doll	ars 7
the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand	Wit	h 38
United States dollars)	•••	

Bag of Words

- ▶ Ignores Word Order, i.e.
 - No emphasis on title
 - No compositional meaning ("Cold War" -> "cold" and "war")
 - Etc.
 - But, massively reduces dimensionality/complexity
- Still and all...
 - Presence or absence of a 100,000-word vocab => 2^100,000 distinct vectors

Naïve Bayes Classifiers

- ▶ $P(Class \mid X)$ for $|Val(X)| = 2^100,000$ requires $2^100,000$ parameters
 - Problematic.
- Bayes' Rule: $P(Class \mid X) = P(X \mid Class) P(Class) / P(X)$
- Assume presence of word *i* is independent of all other words given *Class*:
 - $P(Class \mid X) = \prod_i P(X_i \mid Class) P(Class) / P(X)$
- ▶ Now only 200,001 parameters for P(Class | X)

Naïve Bayes Assumption

- ▶ Features are conditionally independent given class
 - Not P("Republican", "Democrat") = P("Republican")P("Democrat") but instead
 P("Republican", "Democrat" | Class = Politics) =
 P("Republican" | Class = Politics)P("Democrat" | Class = Politics)
- Still, an absurd assumption
 - ("Lottery" ⊥ "Winner" | SPAM)? ("lunch" ⊥ "noon" | Not SPAM)?
- But: offers massive tractability advantages and works quite well in practice
 - Lesson: Unrealistically strong independence assumptions sometimes allow you to build an accurate model where you otherwise couldn't

Getting the parameters from data

- ▶ Parameters $\theta = \langle \theta_{ij} = P(w_i | Class = j) \rangle$
- Maximum Likelihood: Estimate $P(w_i | Class = j)$ from D by counting
 - Fraction of documents in class j containing word i
 - ▶ But if word i never occurs in class j?
- Commonly used MAP estimate:
 - (# docs in class j with word i) + I (# docs in class j) + 2

Caveats

- ▶ Naïve Bayes effective as a classifier
- ▶ **Not** as effective in producing probability estimates
 - $ightharpoonup \Pi_i P(w_i \mid Class)$ pushes estimates toward 0 or 1
- In practice, numerical underflow is typical at classification time
 - Compare sum of logs instead of product

Reading

- ▶ Elements of Statistical Learning, Ch 7:
 - http://statweb.stanford.edu/~tibs/ElemStatLearn/

