
Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Machine Learning

Genetic Algorithms

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Genetic Algorithms

• Developed: USA in the 1970’s
• Early names: J. Holland, K. DeJong, D. Goldberg
• Typically applied to:

– discrete parameter optimization
• Attributed features:

– not too fast
– good for combinatorial problems

• Special Features:
– Emphasizes combining information from good parents

(crossover)
– many variants, e.g., reproduction models, operators

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Oversimplified description of evolution

• There is a group of organisms in an environment
• At some point, each organism dies
• Before it dies each organism may reproduce
• The offspring are (mostly) like the parents

– Combining multiple parents makes for variation
– Mutation makes for variation

• Successes have more kids than failures
– Success = suited to the environment = lives to reproduce

• Over many generations, the population will resemble the
successes more than the failures

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Genotypes and phenotypes
• Genes: the basic instructions for building an organism
• A chromosome is a sequence of genes
• Biologists distinguish between an organism’s

– genotype (the genes and chromosomes)
– phenotype (the actual organism)
– Example: You might have genes to be muscle-bound, but not

grow to be so for other reasons (such as poor diet)
• Genotype->Phenotype mapping can be complex

– Can involve “development,” etc.

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Genotype & Phenotype (1)

3, 2, 7, 5, 2, 4, 1, 1

Genotype
the encoding operated on by mutation and inheritance

Phenotype
the “real” thing

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Genotype & Phenotype (2)

Genotype: Settings for decision tree learner
Attribute_Selection = InfoGain
LaplacePrior = 0.2
LaplaceStrength = 2 examples
Pruning = Off

Phenotype: Decision Tree
Trained on a dataset using the settings given in genotype

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

The basic genetic algorithm
• Start with a large population of randomly generated

“attempted solutions” to a problem
• Repeatedly do the following:

– Evaluate each of the attempted solutions
– Keep a subset of these solutions (the “best” ones)
– Use these solutions to generate a new population

• Quit when you have a satisfactory solution (or you run
out of time)

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Simple Genetic Algorithm (SGA)
• Define an optimization problem

– N queens
• Define a solution encoding as a string (genotype)

– A sequence of digits: the ith digit is the row of the queen in column i.
• Define a fitness function

– Fitness = How many queen-pairs can attack each other (lower is better)
• Define how mutation works

– Each digit in the gene has prob. p of changing from the parent
• Define how inheritance works

– Chances to be a parent determined by fitness
– Two parents, one split-point.

• Define lifespan
– All parents die before new generation reproduces

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Genetic algorithms

• Fitness function: number of non-attacking pairs of
queens (min = 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29% etc

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

• Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

» Assign to each individual a part of the
roulette wheel

» Spin the wheel n times to select n
individuals

SGA operators: Selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B
2/6 = 33%

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

SGA operators: 1-point crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails
• Fraction retained typically in range (0.6, 0.9)

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

SGA operators: mutation

• Alter each gene independently with a
probability pm

• pm is called the mutation rate
– Typically between 1/pop_size and 1/

chromosome_length

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

The simple GA (SGA)

• Has been subject of many (early) studies
– still often used as benchmark for novel GAs

• Shows many shortcomings, e.g.
– Representation (bit strings) is restrictive
– Selection mechanism:

• insensitive to converging populations
• sensitive to absolute value of fitness function

– Generational population model can be improved with
explicit survivor selection

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Positional Bias & 1 Point Crossover
• Performance with 1 Point Crossover depends on the

order that variables occur in the representation
• Positional Bias = more likely to keep together genes

that are near each other
• Can never keep together genes from opposite ends of

string
• Can be exploited if we know about the structure of our

problem, but this is not always the case

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

n-point crossover
• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents
• Generalization of 1 point (still some positional

bias)

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Uniform crossover
• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make inverse copy of the gene for the second child
• Inheritance is independent of position

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

• Only crossover can combine information from two
parents

• Only mutation can introduce new information
(alleles)

• To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation?

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Multiparent recombination
• Note that we are not restricted by nature
• Mutation uses 1 parent
• “traditional” crossover uses 2 parents
• Why not 3 or more parents?

– Based on allele frequencies
• p-sexual voting generalising uniform crossover

– Based on segmentation and recombination of the
parents

• diagonal crossover generalising n-point crossover
– Based on numerical operations on real-valued alleles

• center of mass crossover,
• generalising arithmetic recombination operators

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Permutation Representations
• Task is (or can be solved by) arranging some objects in

a certain order
– Example: sort algorithm:

• important thing is which elements occur before others (order)
– Example: Travelling Salesman Problem (TSP)

• important thing is which elements occur next to each other
(adjacency)

• These problems are generally expressed as a
permutation:
– if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once
• How can we search this representation with a GA?

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Population Models

• SGA uses a Generational model:
– each individual survives for exactly one generation
– the entire set of parents is replaced by the

offspring
• At the other end of the scale are “Steady

State” models (SSGA):
– one offspring is generated per generation,
– one member of population replaced,

• Generation Gap
– the proportion of the population replaced
– 1.0 for SGA, 1/pop_size for SSGA

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

• Premature Convergence
– One highly fit member can rapidly take over if rest

of population is much less fit
• Loss of “selection pressure”

– At end of runs when fitness values are similar
• Highly susceptible to function transposition
• Scaling can help with last two problems

– Windowing: f’(i) = f(i) - β t

• where β is worst fitness in this generation (or last n gen.)
– Sigma Scaling: f’(i) = (f(i) – 〈 f 〉)/(c • σf)

• where c is a constant, usually 2.0

Fitness-Proportionate Selection

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Function transposition for FPS

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Rank – Based Selection
• Attempt to remove problems of FPS by basing

selection probabilities on relative rather than
absolute fitness

• Rank population according to fitness and then
base selection probabilities on rank where fittest
has rank µ and worst rank 1

• This imposes a sorting overhead on the
algorithm, but this is usually negligible compared
to the fitness evaluation time

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Tournament Selection
• Rank based selection relies on global population

statistics
– Could be a bottleneck esp. on parallel machines
– Relies on presence of absolute fitness function which

might not exist: e.g. evolving game players
• Informal Procedure:

– Pick k members at random then select the best of
these

– Repeat to select more individuals

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Tournament Selection 2

• Probability of selecting i will depend on:
– Rank of i
– Size of sample k

• higher k increases selection pressure
– Whether contestants are picked with replacement

• Picking without replacement increases selection pressure
– Whether fittest contestant always wins

(deterministic) or this happens with probability p
• For k = 2, time for fittest individual to take over

population is the same as linear ranking with s = 2 • p

Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Concluding remarks

• Genetic algorithms are—
– Fun!
– Slow

• They look at a LOT of solutions
– Challenging to code appropriately

• ½ the work is finding the right representations
– Previously hyped (in the 90’s), now less

popular than other techniques
• But, may come back into vogue at any moment.

	Machine Learning
	Genetic Algorithms
	Oversimplified description of evolution
	Genotypes and phenotypes
	Genotype & Phenotype (1)
	Genotype & Phenotype (2)
	The basic genetic algorithm
	Simple Genetic Algorithm (SGA)
	Genetic algorithms
	SGA operators: Selection
	SGA operators: 1-point crossover
	SGA operators: mutation
	The simple GA (SGA)
	Positional Bias & 1 Point Crossover
	n-point crossover
	Uniform crossover
	Crossover OR mutation?
	Multiparent recombination
	Permutation Representations
	Population Models
	Fitness-Proportionate Selection
	Function transposition for FPS
	Rank – Based Selection
	Tournament Selection
	Tournament Selection 2
	Concluding remarks

