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Genetic Algorithms

• Developed: USA in the 1970’s
• Early names: J. Holland, K. DeJong, D. Goldberg
• Typically applied to:

– discrete parameter optimization
• Attributed features:

– not too fast
– good for combinatorial problems

• Special Features:
– Emphasizes combining information from good parents 

(crossover)
– many variants, e.g., reproduction models, operators
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Oversimplified description of evolution

• There is a group of organisms in an environment
• At some point, each organism dies
• Before it dies each organism may reproduce
• The offspring are (mostly) like the parents

– Combining multiple parents makes for variation
– Mutation makes for variation

• Successes have more kids than failures
– Success = suited to the environment = lives to reproduce

• Over many generations, the population will resemble the 
successes more than the failures



Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Genotypes and phenotypes
• Genes: the basic instructions for building an organism
• A chromosome is a sequence of genes
• Biologists distinguish between an organism’s 

– genotype (the genes and chromosomes) 
– phenotype (the actual organism)
– Example: You might have genes to be muscle-bound, but not 

grow to be so for other reasons (such as poor diet)
• Genotype->Phenotype mapping can be complex

– Can involve “development,” etc.
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Genotype & Phenotype (1)

3, 2, 7, 5, 2, 4, 1, 1

Genotype
the encoding operated on by mutation and inheritance 

Phenotype
the “real” thing
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Genotype & Phenotype (2)

Genotype: Settings for decision tree learner
Attribute_Selection = InfoGain
LaplacePrior = 0.2
LaplaceStrength = 2 examples
Pruning = Off

Phenotype: Decision Tree
Trained on a dataset using the settings given in genotype
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The basic genetic algorithm
• Start with a large population of randomly generated

“attempted solutions” to a problem
• Repeatedly do the following:

– Evaluate each of the attempted solutions
– Keep a subset of these solutions (the “best” ones)
– Use these solutions to generate a new population

• Quit when you have a satisfactory solution (or you run 
out of time)
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Simple Genetic Algorithm (SGA)
• Define an optimization problem

– N queens
• Define a solution encoding as a string (genotype)

– A sequence of digits: the ith digit is the row of the queen in column i.
• Define a fitness function

– Fitness = How many queen-pairs can attack each other (lower is better)
• Define how mutation works

– Each digit in the gene has prob. p of changing from the parent
• Define how inheritance works

– Chances to be a parent determined by fitness
– Two parents, one split-point.

• Define lifespan
– All parents die before new generation reproduces
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Genetic algorithms

• Fitness function: number of non-attacking pairs of 
queens (min = 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29% etc
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• Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

» Assign to each individual a part of the 
roulette wheel

» Spin the wheel n times to select n 
individuals

SGA operators: Selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B
2/6 = 33%
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SGA operators: 1-point crossover

• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails
• Fraction retained typically in range (0.6, 0.9)
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SGA operators: mutation

• Alter each gene independently with a 
probability pm 

• pm is called the mutation rate
– Typically between 1/pop_size and 1/

chromosome_length
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The simple GA (SGA)

• Has been subject of many (early) studies
– still often used as benchmark for novel GAs

• Shows many shortcomings, e.g.
– Representation (bit strings) is restrictive
– Selection mechanism:

• insensitive to converging populations
• sensitive to absolute value of fitness function

– Generational population model can be improved with 
explicit survivor selection
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Positional Bias & 1 Point Crossover
• Performance with 1 Point Crossover depends on the 

order that variables occur in the representation
• Positional Bias = more likely to keep together genes 

that are near each other
• Can never keep together genes from opposite ends of 

string
• Can be exploited if we know about the structure of our 

problem, but this is not always the case
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n-point crossover
• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents
• Generalization of 1 point (still some positional 

bias)
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Uniform crossover
• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make inverse copy of the gene for the second child
• Inheritance is independent of position
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• Only crossover can combine information from two 
parents

• Only mutation can introduce new information 
(alleles)

• To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation? 
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Multiparent recombination
• Note that we are not restricted by nature
• Mutation uses 1 parent
• “traditional” crossover uses 2 parents
• Why not 3 or more parents? 

– Based on allele frequencies
• p-sexual voting generalising uniform crossover

– Based on segmentation and recombination of the 
parents

• diagonal crossover generalising n-point crossover
– Based on numerical operations on real-valued alleles

• center of mass crossover, 
• generalising arithmetic recombination operators



Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Permutation Representations
• Task is (or can be solved by) arranging some objects in 

a certain order 
– Example: sort algorithm: 

• important thing is which elements occur before others (order)
– Example: Travelling Salesman Problem (TSP)

• important thing is which elements occur next to each other 
(adjacency)

• These problems are generally expressed as a 
permutation:
– if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once
• How can we search this representation with a GA?
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Population Models

• SGA uses a Generational model:
– each individual survives for exactly one generation
– the entire set of  parents is replaced by the 

offspring
• At the other end of the scale are “Steady 

State” models (SSGA):
– one offspring is generated per generation,
– one member of population replaced,

• Generation Gap 
– the proportion of the population replaced
– 1.0 for SGA,  1/pop_size for SSGA
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• Premature Convergence
– One highly fit member can rapidly take over if rest 

of population is much less fit
• Loss of “selection pressure”

– At end of runs when fitness values are similar
• Highly susceptible to function transposition
• Scaling can help with last two problems

– Windowing: f’(i) = f(i) - β t 

• where β is worst fitness in this generation (or last n gen.)
– Sigma Scaling: f’(i) = (f(i) – 〈 f 〉)/(c • σf)

• where c is a constant, usually 2.0

Fitness-Proportionate Selection
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Function transposition for FPS
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Rank – Based Selection
• Attempt to remove problems of FPS by basing 

selection probabilities on relative rather than 
absolute fitness

• Rank population according to fitness and then 
base selection probabilities on rank where fittest 
has rank µ and worst rank 1

• This imposes a sorting overhead on the 
algorithm, but this is usually negligible compared 
to the fitness evaluation time



Doug Downey, adapted from Bryan Pardo, Machine Learning EECS 349 Fall 2007

Tournament Selection
• Rank based selection relies on global population 

statistics
– Could be a bottleneck esp. on parallel machines
– Relies on presence of absolute fitness function which 

might not exist: e.g. evolving game players
• Informal Procedure:

– Pick k members at random then select the best of 
these

– Repeat to select more individuals
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Tournament Selection 2

• Probability of selecting i will depend on:
– Rank of i
– Size of sample k 

• higher k increases selection pressure
– Whether contestants are picked with replacement

• Picking without replacement increases selection pressure
– Whether fittest contestant always wins 

(deterministic) or this happens with probability p
• For k = 2, time for fittest individual to take over 

population is the same as linear ranking with s = 2 • p
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Concluding remarks

• Genetic algorithms are—
– Fun! 
– Slow 

• They look at a LOT of solutions
– Challenging to code appropriately

• ½ the work is finding the right representations 
– Previously hyped (in the 90’s), now less 

popular than other techniques
• But, may come back into vogue at any moment.
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