Hypothesis Testing and Computational Learning Theory

EECS 349 Machine Learning With slides from Bryan Pardo, Tom Mitchell

Overview

- Hypothesis Testing: How do we know our learners are "good" ?
 - What does performance on test data imply/guarantee about future performance?
- Computational Learning Theory: Are there general laws that govern learning?
 - Sample Complexity: How many training examples are needed to learn a successful hypothesis?
 - Computational Complexity: How much computational effort is needed to learn a successful hypothesis?

Some terms

- *X* is the set of all possible instances
- *C* is the set of all possible concepts *c* where $c: X \to \{0, 1\}$
- *H* is the set of hypotheses considered by a learner, $H \subseteq C$
- *L* is the learner
- *D* is a probability distribution over *X*that generates observed instances

Definition

The true error of hypothesis h, with respect to the target concept c and observation distribution D is the probability that h will misclassify an instance drawn according to D

$$error_{D} \equiv \Pr_{x \in D}[c(x) \neq h(x)]$$

In a perfect world, we'd like the true error to be 0

Definition

The sample error of hypothesis h, with respect to the target concept c and sample S is the proportion of S that that h misclassifies:

$$error_{S}(h) = |I| |S| \sum_{x \in S} \delta(c(x), h(x))$$

where $\delta(c(x), h(x)) = 0$ if c(x) = h(x), I otherwise 1. *Bias:* If S is training set, $error_S(h)$ is optimistically biased

$$bias \equiv E[error_S(h)] - error_D(h)$$

For unbiased estimate, h and S must be chosen independently

2. Variance: Even with unbiased S, $error_{S}(h)$ may still vary from $error_{\mathcal{D}}(h)$

Hypothesis h misclassifies 12 of the 40 examples in S

$$error_S(h) = \frac{12}{40} = .30$$

What is $error_{\mathcal{D}}(h)$?

Estimators

Experiment:

- 1. choose sample S of size n according to distribution $\mathcal D$
- 2. measure $error_{S}(h)$

 $error_{S}(h)$ is a random variable (i.e., result of an experiment)

 $error_{S}(h)$ is an unbiased estimator for $error_{D}(h)$ Given observed $error_{S}(h)$ what can we conclude about $error_{D}(h)$?

If

- $\bullet~S$ contains n examples, drawn independently of h and each other
- $n \ge 30$ and $n^* error_s(h)$, $n^*(1 error_s(h))$ each > 5 Then
 - \bullet With approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

Confidence Intervals

Under same conditions...

• With approximately N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where

N%):	50%	68%	80%	90%	95%	98%	99%
z_N		0.67	1.00	1.28	1.64	1.96	2.33	2.58

Life Skills

Convincing demonstration' that certain enhancements improve performance?

- Use online Fisher Exact or Chi Square tests to evaluate hypotheses, e.g:
 - http://www.socscistatistics.com/tests/chisquare2/Default2.aspx

Overview

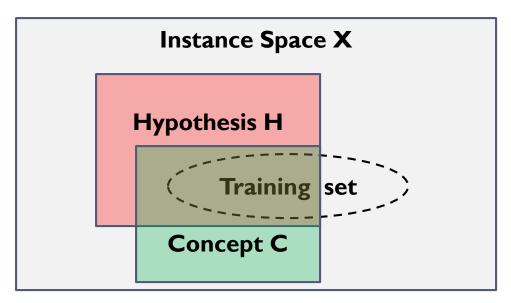
- Hypothesis Testing: How do we know our learners are "good" ?
 - What does performance on test data imply/guarantee about future performance?
- Computational Learning Theory: Are there general laws that govern learning?
 - Sample Complexity: How many training examples are needed to learn a successful hypothesis?
 - Computational Complexity: How much computational effort is needed to learn a successful hypothesis?

Computational Learning Theory

- Are there general laws that govern learning?
 - No Free Lunch Theorem: The expected accuracy of *any* learning algorithm across all concepts is 50%.
- But can we still say something positive?
 - Yes.
 - Probably Approximately Correct (PAC) learning

The world isn't perfect

If we can't provide every instance for training, a consistent hypothesis may have error on unobserved instances.



 How many training examples do we need to bound the likelihood of error to a reasonable level?
When is our hypothesis Probably Approximately Correct (PAC)?

Definitions

- A hypothesis is consistent if it has zero error on training examples
- The version space (VS_{H,T}) is the set of all hypotheses consistent on training set T in our hypothesis space H
 - (reminder: hypothesis space is the set of concepts we're considering, e.g. depth-2 decision trees)

Definition: E-exhausted

IN ENGLISH:

The set of hypotheses consistent with the training data

T is *E*-exhausted if, when you test them on the actual distribution of instances, all consistent hypotheses have error below ε

IN MATH:

 $VS_{H,T}$ is ε - exhausted for concept cand sample distribution D, if.... $\forall h \in VS_{H,T}, error_D(h) < \varepsilon$

A Theorem

If hypothesisspace H is finite, & training set T contains m independent randomly drawn examples of concept c

THEN, for any $0 \le \varepsilon \le 1$...

 $P(VS_{H,T} \text{ is NOT } \varepsilon \text{ -exhausted}) \leq |H|e^{-\varepsilon m}$

Proof of Theorem

If hypothesis *h* has true error ε , the probability of it getting a single random example right is :

 $P(h \text{ got } 1 \text{ example right}) = 1 - \varepsilon$

Ergo the probability of *h* getting *m* examples right is :

 $P(h \text{ got } m \text{ examples right}) = (1-\varepsilon)^m$

If there are k hypotheses in H with error at least ε , call the probability at least one of those k hypotheses got m instances right P(at least one bad h looks good).

This prob. is BOUNDED by $k(1-\varepsilon)^m$

 $P(\text{at least one bad } h \text{ looks good}) \leq k(1-\varepsilon)^{m}$

Proof of Theorem (continued)

```
Since k \leq |H|, it follows that k(1-\varepsilon)^m \leq |H|(1-\varepsilon)^m
```

```
If 0 \le \varepsilon \le 1, then (1 - \varepsilon) \le e^{-\varepsilon}
```

Therefore...

 $P(\text{at least one bad } h \text{ looks good}) \le k(1-\varepsilon)^m \le |\mathbf{H}|(1-\varepsilon)^m \le |\mathbf{H}|e^{-\varepsilon m}$

Proof complete!

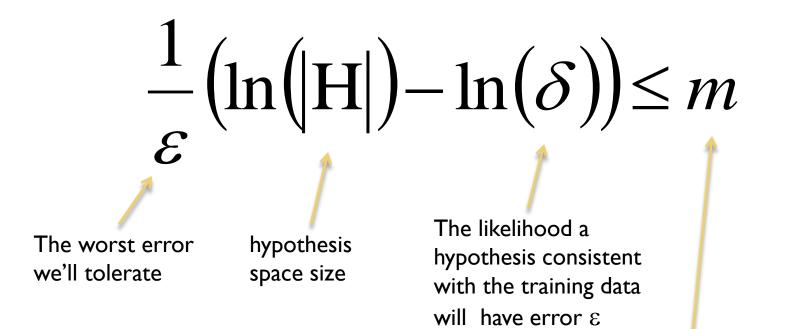
We now have a bound on the likelihood that a hypothses is consistent with the training data will have error $\geq \varepsilon$

Using the theorem

Let's rearrange to see how many training examples we need to set a bound δ on the likelihood our true error is ε .

 $|\mathbf{H}|e^{-\varepsilon m} \leq \delta$ $\ln(|\mathbf{H}|e^{-\varepsilon m}) \leq \ln(\delta)$ $\ln(|\mathbf{H}|) + \ln(e^{-\varepsilon m}) \le \ln(\delta)$ $\ln(|\mathbf{H}|) - \varepsilon m \le \ln(\delta)$ $\ln(|\mathbf{H}|) - \ln(\delta) \le \varepsilon m$ $\frac{1}{\epsilon} \left(\ln \left(|\mathbf{H}| \right) - \ln(\delta) \right) \le m$ $\frac{1}{\varepsilon} \left(\ln \left(|\mathbf{H}| \right) + \ln \left(\frac{1}{\delta} \right) \right) \le m$

Probably Approximately Correct (PAC)



number of training examples

Using the bound

$\frac{1}{\varepsilon} \left(\ln \left(|\mathbf{H}| \right) - \ln(\delta) \right) \le m$

Plug in \mathcal{E}, δ , and H to get a number of training examples m that will "guarantee" your learner will generate a hypothesis that is Probably Approximately Correct.

NOTE: This assumes that the concept is actually IN H, that H is finite, and that your training set is drawn using distribution D

Average accuracy of any learner across all concepts is 50%, but also: $\frac{1}{\varepsilon} \left(\ln(|\mathbf{H}|) - \ln(\delta) \right) \le m$ How can both be true?

Fnd

Think Start

24

Average accuracy of any learner across all concepts is 50%, but also: $\frac{1}{\varepsilon} \left(\ln(|\mathbf{H}|) - \ln(\delta) \right) \le m$ How can both be true?

Fnd

|Pair Start

Average accuracy of any learner across all concepts is 50%, but also: $\frac{1}{\varepsilon} \left(\ln(|\mathbf{H}|) - \ln(\delta) \right) \le m$ How can both be true?

Share

Problems with PAC

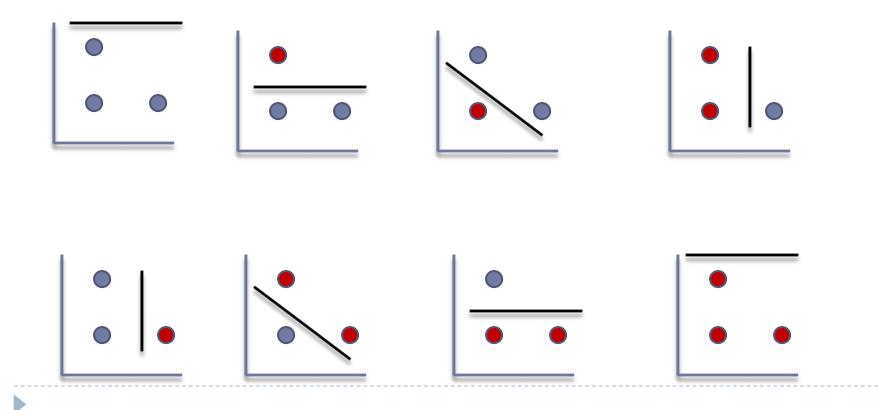
- The PAC Learning framework has 2 disadvantages:
 - I) It can lead to weak bounds

2)Sample Complexity bound cannot be established for infinite hypothesis spaces

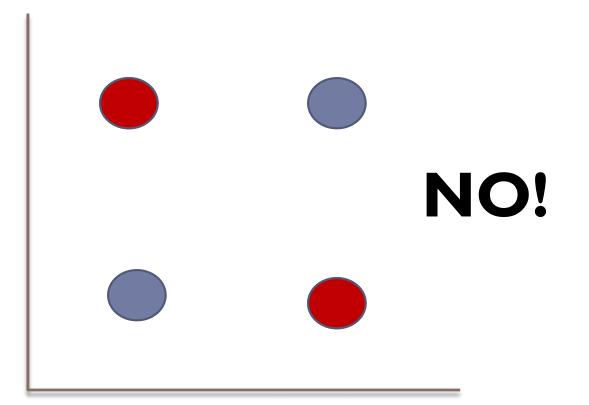
We introduce the VC dimension for dealing with these problems

Shattering

Def: A set of instances S is **shattered** by hypothesis set H iff for every possible concept c on S there exists a hypothesis h in H that is consistent with that concept.

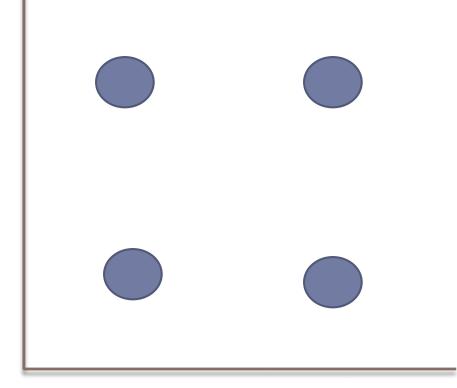


Can a linear separator shatter this?



The ability of H to shatter a set of instances is a measure of its capacity to represent target concepts defined over those instances

Can a quadratic separator shatter this?



Vapnik-Chervonenkis Dimension

Def: The **Vapnik-Chervonenkis dimension**, **VC(H)** of hypothesis space **H** defined over instance space **X** is the size of the largest finite subset of **X** shattered by **H**. If arbitrarily large finite sets can be shattered by **H**, then **VC(H)** is infinite.

How many training examples needed?

Lower bound on *m* using VC(H)

$$m \ge \frac{1}{\varepsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon))$$

Infinite VC dimension?

Þ

What kind of classifier (that we've talked about) has infinite VC dimension?

Think Start

| End

34

What kind of classifier (that we've talked about) has infinite VC dimension?

| End

35

What kind of classifier (that we've talked about) has infinite VC dimension?

Share