Machine Learning

Measuring Distance

Why measure distance?

- Nearest neighbor requires a distance measure
- Also:
- Local search methods require a measure of "locality" (Friday)
- Clustering requires a distance measure (later)
- Search engines require a measure of similarity, etc.

Euclidean Distance

- What people intuitively think of as "distance"

Dimension 1

Generalized Euclidean Distance

$\mathrm{n}=$ the number of dimensions
$d(\vec{x}, \vec{y})=\left[\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right]^{1 / 2}$
where $\vec{x}=<x_{1}, x_{2}, \ldots, x_{n}>$,

$$
\overrightarrow{\mathrm{y}}=<y_{1}, y_{2}, \ldots, y_{n}>
$$

$$
\text { and } \quad \forall i\left(x_{i}, y_{i} \in \mathfrak{R}\right)
$$

Lp norms

- Lp norms are all special cases of this:

$$
d(\vec{x}, \vec{y})=\left[\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right]^{1 / p} \underbrace{}_{\mathrm{p} \text { changes the norm }}
$$

$$
\|\mathrm{x}\|_{1}=\mathrm{L}^{1} \text { norm }=\text { Manhattan Distance }: p=1
$$

$\|\mathrm{x}\|_{2}=\mathrm{L}^{2}$ norm $=$ Euclidean Distance : $p=2$

Hamming Distance : $p=1$ and $x_{i}, y_{i} \in\{0,1\}$

Weighting Dimensions

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the "right" answer for both situations?

Weighting Dimensions

Think

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the "right" answer for both situations?

Weighting Dimensions

Pair

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the "right" answer for both situations?

Weighting Dimensions

Share

- Put point in cluster with the closest center of gravity?
- Which cluster should the red point go in?
- How do I measure distance in a way that gives the "right" answer for both situations?

Weighted Norms

- You can compensate by weighting your dimensions....

$$
d(\vec{x}, \vec{y})=\left[\sum_{i=1}^{n} w_{i}\left|x_{i}-y_{i}\right|^{p}\right]^{1 / p}
$$

This lets you turn your circle of equal-distance into an elipse with axes parallel to the dimensions of the vectors.

Mahalanobis distance

The region of constant Mahalanobis distance around the mean of a distribution forms an ellipsoid.
The axes of this ellipsiod don't have to be parallel to the dimensions describing the vector

Images from: http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm

Calculating Mahalanobis

$$
d(\vec{x}, \vec{y})=\sqrt{(\vec{x}-\vec{y})^{T} S^{-1}(\vec{x}-\vec{y})}
$$

- This matrix S is called the "covariance" matrix and is calculated from the data distribution

Take-away on Mahalanobis

What is a "metric"?

- A metric has these four qualities.
$d(x, y)=0$ iff $\quad x=y \quad$ (reflexivity)
$d(x, y) \geq 0$
(non - negative)
$d(x, y)=d(y, x)$
(symmetry)
$d(x, y)+d(y, z) \geq d(x, z) \quad$ (triangle inequality)
- ...otherwise, call it a "measure"

Metric, or not?

- Driving distance with 1-way streets

- Categorical Stuff :
- Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?

Categorical Variables

- Consider feature vectors for genre \& vocals:
- Genre: \{Blues, Jazz, Rock, Hip Hop\}
- Vocals: \{vocals,no vocals\}
s1 = \{rock, vocals $\}$
s2 $=\{j a z z$, no vocals $\}$
s3 = \{ rock, no vocals $\}$
- Which two songs are more similar?

One Solution:Hamming distance

Blues	Jazz	Rock		Vo	s1 = \{rock, vocals $\}$
0	0	1	0	1	
0	1	0	0	0	s2 $=$ \{jazz, no_vocals $\}$
0	0	1	0	0	s3 = \{ rock, no_vocals\}

Hamming Distance = number of different bits in two binary vectors

Hamming Distance

$d(\vec{x}, \vec{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$
where $\vec{x}=<x_{1}, x_{2}, \ldots, x_{n}>$,

$$
\overrightarrow{\mathrm{y}}=<y_{1}, y_{2}, \ldots, y_{n}>
$$

and $\forall i\left(x_{i}, y_{i} \in\{0,1\}\right)$

Defining your own distance (an example)

How often does artist x quote artist y ?

Quote Frequency

	Beethoven	Beatles	Liz Phair
Beethoven	7	0	0
Beatles	4	5	0
Liz Phair	$?$	1	2

Let's build a distance measure!

Defining your own distance

(an example)

	Beethoven	Beatles	Liz Phair
Beethoven	7	0	0
Beatles	4	5	0
Liz Phair	$?$	1	2

Quote frequency $Q_{f}(x, y)=$ value in table
Distance $d(x, y)=1-\frac{Q_{f}(x, y)}{\sum_{z \in \text { Artists }} Q_{f}(x, z)}$

Missing data

- What if, for some category, on some examples, there is no value given?
- Approaches:
- Discard all examples missing the category
- Fill in the blanks with the mean value
- Only use a category in the distance measure if both examples give a value

Dealing with missing data

$$
\begin{aligned}
& w_{i}=\left\{\begin{array}{l}
1, \text { if both } x_{i} \text { and } y_{i} \text { are defined } \\
0, \text { else }
\end{array}\right. \\
& d(\vec{x}, \vec{y})=\frac{n}{n-\sum_{i=1}^{n} w_{i}}\left[\sum_{i=1}^{n} w_{i} \phi\left(x_{i}, y_{i}\right)\right]
\end{aligned}
$$

Edit Distance

- Query = string from finite alphabet Target = string from finite alphabet
- Cost of Edits = Distance

Semantic Relatedness

d(Portland, Hippies)

$$
\ll
$$

d(Portland, Monster trucks)

Semantic Relatedness

- Several measures have been proposed
- One that works well: "Milne-Witten"
$\mathrm{SR}_{\text {MW }}(\mathbf{x}, \mathbf{y}) \propto$ fraction of Wikipedia in-links to either \mathbf{x} or \mathbf{y} that link to both

Ad-hoc Reference Systems

Cowntry
music

Ad-hoc Reference Systems

Cowntry
music

WIKIpEDIA

The Free Encyclopedia

Category:Grammy Award winners

From Wikipedia, the free encyclopedia

Rock music

Hip
music

Ad-hoc Reference Systems

Ad-hoc Reference Systems

Ad-hoc Reference Systems

One more distance measure

- Kullback-Leibler divergence
- Related to entropy \& information gain
- not a metric, since it is not symmetric
- Take EECS 428:Information Theory to find out more

