Machine Learning

Boosting

(based on Rob Schapire's IJCAI'99 talk and slides by B. Pardo)

Horse Race Prediction

How to Make \$\$\$ In Horse Races?

- Ask a professional.
- Suppose:
 - Professional <u>cannot</u> give single highly accurate rule
 - ...but presented with a set of races, can always generate better-than-random rules
- Can you get rich?

Idea

- 1) Ask expert for rule-of-thumb
- 2) Assemble set of cases where rule-of-thumb fails (hard cases)
- 3) Ask expert for a rule-of-thumb to deal with the hard cases
- 4) Goto Step 2
- Combine all rules-of-thumb
- Expert could be "weak" learning algorithm

Questions

- <u>How to choose</u> races on each round?
 - concentrate on "hardest" races
 (those most often misclassified by previous rules of thumb)
- <u>How to combine</u> rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb

Boosting

- <u>boosting</u> = general method of converting rough rules of thumb into highly accurate prediction rule
- more technically:
 - given "weak" learning algorithm that can consistently find hypothesis (classifier) with error $\leq 1/2-\gamma$
 - a boosting algorithm can <u>provably</u> construct single hypothesis with error $\leq \epsilon$

This Lecture

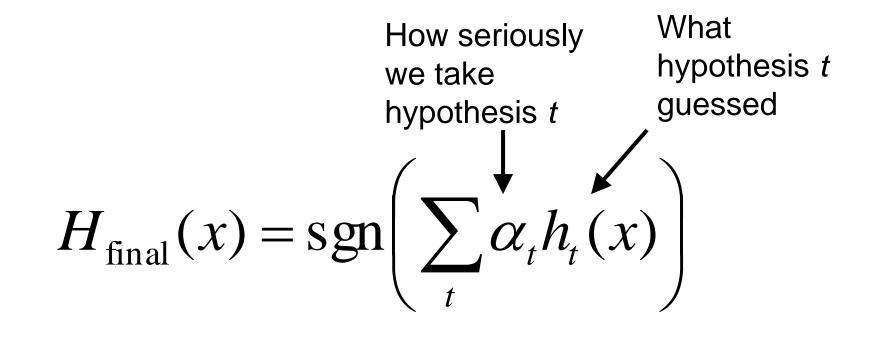
- Introduction to boosting (AdaBoost)
- Analysis of training error
- Analysis of generalization error based on theory of margins
- Extensions
- Experiments

A Formal View of Boosting

- Given training set $X = \{(x_1, y_1), ..., (x_m, y_m)\}$
- $y_i \in \{-1,+1\}$ correct label of instance $x_i \in X$
- for timesteps t = 1, ..., T: • construct a distribution D_t on $\{1, ..., m\}$ • Find a <u>weak hypothesis</u> $h_t : X \to \{-1, +1\}$ with error ε_t on D_t : $\varepsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$
- Output a final hypothesis H_{final} that combines the weak hypotheses in a good way

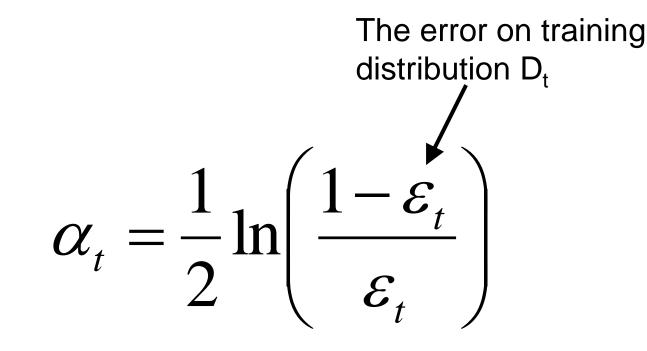
Weighting the Votes

• **H**_{final} is a weighted combination of the choices from all our hypotheses.



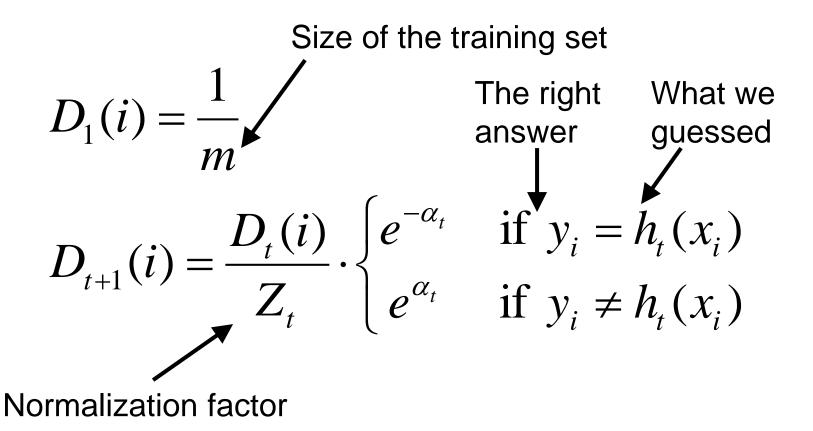
The Hypothesis Weight

 α_t determines how "seriously" we take this particular classifier's answer



The Training Distribution

D_t determines which elements in the training set we focus on.



The Hypothesis Weight

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0$$

 $D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$

AdaBoost [Freund&Schapire '97]

• constructing D_t :

•
$$D_1(i) = \frac{1}{m}$$

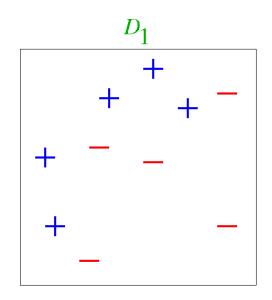
• given D_t and h_t :

$$D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t}{Z_t} \cdot \exp(-\alpha_t \cdot y_i \cdot h_t(x_i))$$

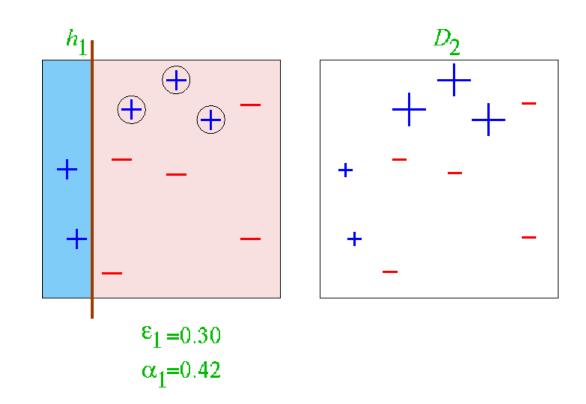
where: $Z_t = \text{normalization constant}$ $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0$

• final hypothesis: $H_{\text{final}}(x) = \text{sgn}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

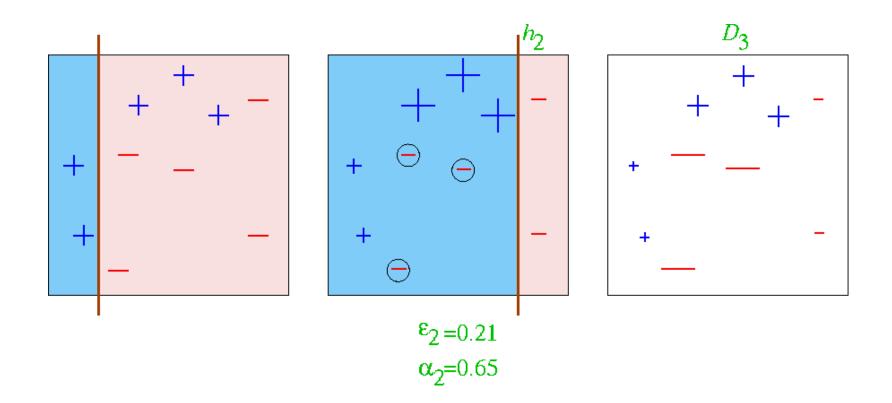
Toy Example



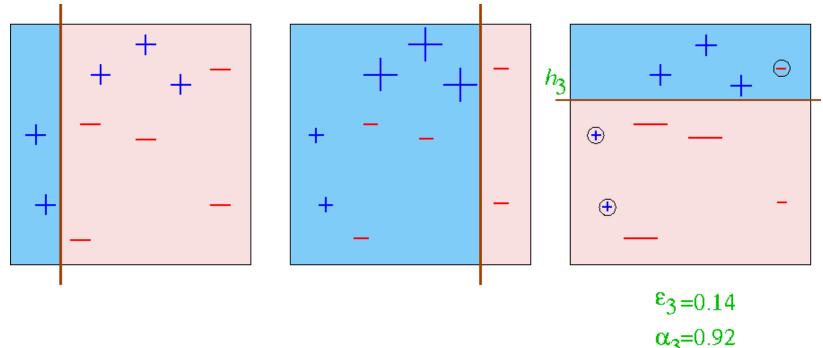
Round 1



Round 2

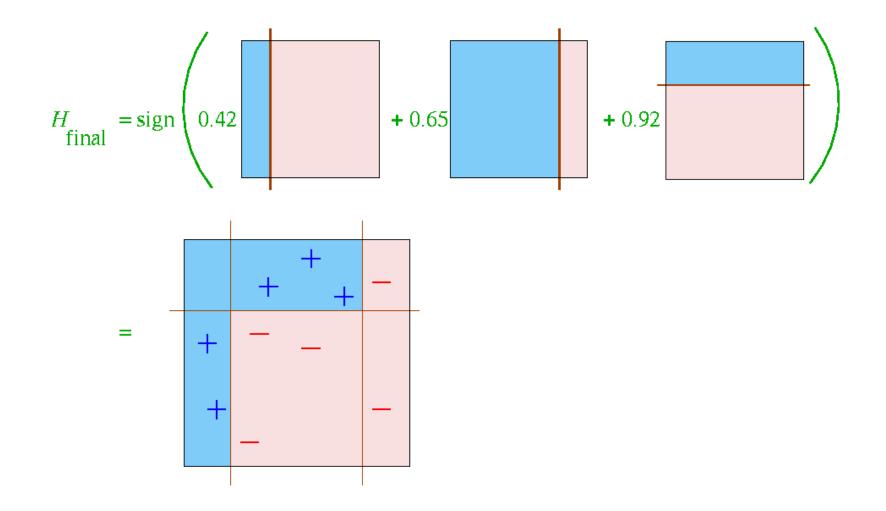


Round 3



$$\alpha_3 = 0.92$$

Final Hypothesis



Analyzing the Training Error

• Theorem [Freund&Schapire '97]:

write ε_t as $\frac{1}{2}-\gamma_t$

then, training error(H_{final}) $\leq \exp\left(-2\sum_{t} \gamma_{t}^{2}\right)$

so if $\forall t: \gamma_t \ge \gamma > 0$ then

then, training error(H_{final}) $\leq e^{-2\gamma^2 T}$

Analyzing the Training Error

- So what? This means <u>Ada</u>Boost is <u>adaptive</u>:
 - does not need to know γ or T a priori
 - Works as long as $\gamma_t > 0$

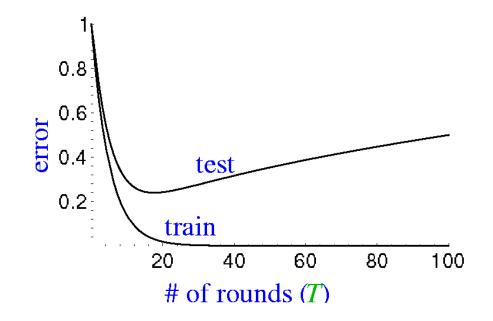
Proof Intuition

• on round *t*:

increase weight of examples incorrectly classified by h_t

- if x_i incorrectly classified by H_{final}
 then x_i incorrectly classified by weighted majority of h_i's then x_i must have "large" weight under final dist. D_{T+1}
- since total weight < 1: number of incorrectly classified examples "small"

Analyzing Generalization Error



we expect:

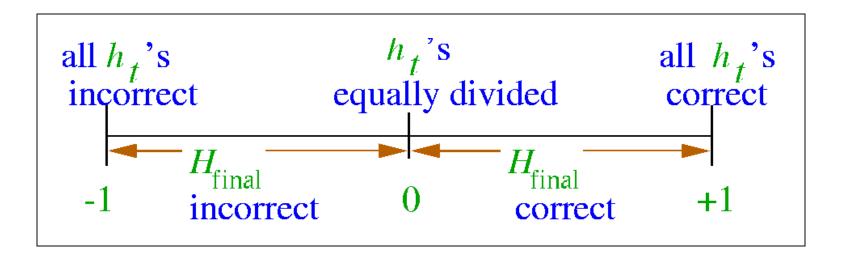
- training error to continue to drop (or reach zero)
- test error to <u>increase</u> when H_{final} becomes "too complex" (Occam's razor)

A Typical Run



- Test error does <u>not</u> increase even after 1,000 rounds (~2,000,000 nodes)
- Test error continues to drop after training error is zero!
- Occam's razor wrongly predicts "simpler" rule is better.

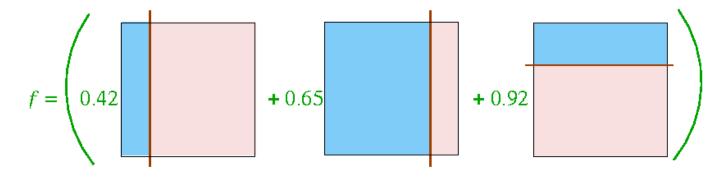
A Better Story: Margins



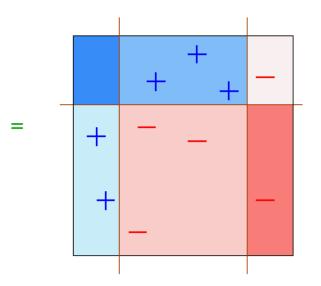
Key idea: Consider <u>confidence</u> (margin):

- with $H_{\text{final}}(x) = \text{sgn}(f(x)) \qquad f(x) = \frac{\sum_{t} \alpha_t h_t(x)}{\sum_{t} \alpha_t} \in [-1,1]$
- define: margin of $(x,y) = y \cdot f(x)$

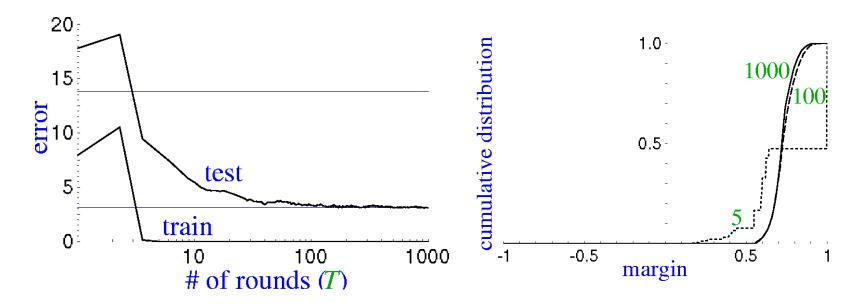
Margins for Toy Example



/(0.42 + 0.65 + 0.92)



The Margin Distribution



epoch	5	100	1000
training error	0.0	0.0	0.0
test error	8.4	3.3	3.1
%margins≤0.5	7.7	0.0	0.0
Minimum margin	0.14	0.52	0.55

Boosting Maximizes Margins

• Can be shown to minimize

 $\sum_{i} e^{-y_i f(x_i)} = \sum_{i} e^{-y_i \sum_{t} \alpha_t h_t(x_i)}$

 ∞ to margin of (x_i, y_i)

Analyzing Boosting Using Margins

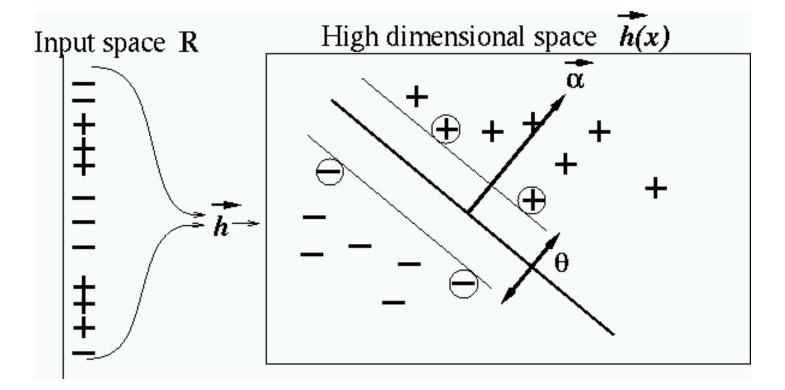
generalization error bounded by function of training sample margins:

error
$$\leq \hat{\Pr}[\operatorname{margin}_{f}(x, y) \leq \theta] + \tilde{O}\left(\sqrt{\frac{\operatorname{VC}(H)}{m\theta^{2}}}\right)$$

- larger margin \Rightarrow better bound
- bound <u>independent</u> on # of epochs
- boosting tends to increase margins of training examples by concentrating on those with smallest margin

Relation to SVMs

SVM: map *x* into high-dim space, separate data linearly



Relation to SVMs (cont.)

$$H(x) = \begin{cases} +1 & \text{if } 2x^5 - 5x^2 + x > 10 \\ -1 & \text{otherwise} \end{cases}$$

$$\vec{h}(x) = (1, x, x^2, x^3, x^4, x^5)$$

 $\vec{\alpha} = (-10, 1, -5, 0, 0, 2)$

$$H(x) = \begin{cases} +1 & \text{if } \vec{\alpha} \cdot \vec{h}(x) > 0\\ -1 & \text{otherwise} \end{cases}$$

• Both maximize margins:

$$\theta \doteq \max_{w} \min_{i} \frac{(\vec{\alpha} \cdot \vec{h}(x_i)) y_i}{\|\vec{\alpha}\|}$$

- SVM: $\|\vec{\alpha}\|_2$ Euclidean norm (L_2)
- AdaBoost: $\|\vec{\alpha}\|_1$ Manhattan norm (L_1)
- Has implications for optimization, PAC bounds

See [Freund et al '98] for details

Extensions: Multiclass Problems

- Reduce to binary problem by creating several binary questions for each example:
 - "does or does not example *x* belong to class 1?"
 - "does or does not example x belong to class 2?"
 - "does or does not example *x* belong to class 3?"

Extensions: Confidences and Probabilities

• Prediction of hypothesis h_t : $sgn(h_t(x))$

• Confidence of hypothesis h_t : $|h_t(x)|$

• Probability of
$$H_{\text{final}}$$
: $\Pr_f[y=+1|x] = \frac{e^{f(x)}}{e^{f(x)} + e^{-f(x)}}$

[Schapire&Singer '98], [Friedman, Hastie & Tibshirani '98]

Practical Advantages of AdaBoost

- (quite) fast
- simple + easy to program
- only a single parameter to tune (*T*)
- no prior knowledge
- flexible: can be combined with any classifier (neural net, C4.5, ...)
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing
- finds outliers

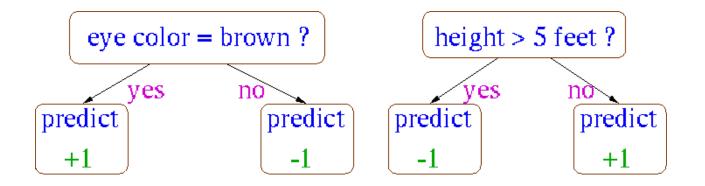
Caveats

- performance depends on <u>data</u> & <u>weak learner</u>
- AdaBoost can fail if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 - underfitting
 - Low margins \rightarrow overfitting
- empirically, AdaBoost seems susceptible to noise

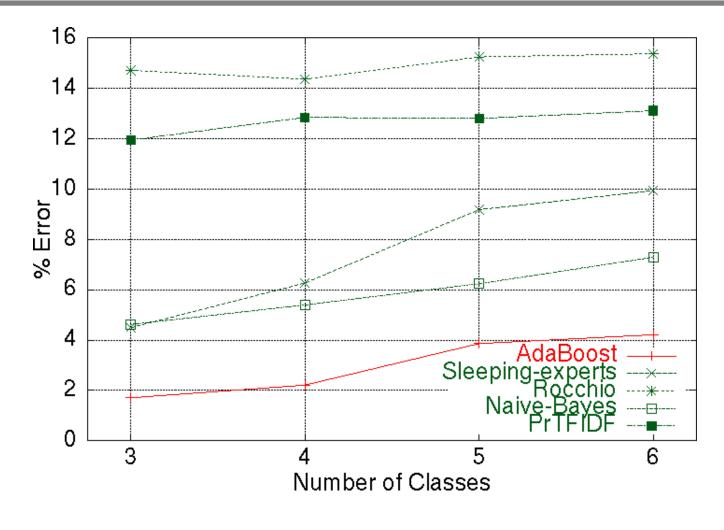
UCI Benchmarks

Comparison with

- C4.5 (Quinlan's Decision Tree Algorithm)
- Decision Stumps (only single attribute)



Text Categorization



database: Reuters

Conclusion

- boosting useful tool for classification problems
 - grounded in rich theory
 - performs well experimentally
 - often (but not always) resistant to overfitting
 - many applications
- but
 - slower classifiers
 - result less comprehensible
 - sometime susceptible to noise

Other Ensembles

- Bagging
- Stacking

Background

• [Valiant'84]

introduced theoretical PAC model for studying machine learning

- [Kearns&Valiant'88]
 open problem of finding a boosting algorithm
- [Schapire'89], [Freund'90]

first polynomial-time boosting algorithms

• [Drucker, Schapire&Simard '92]

first experiments using boosting

Backgroung (cont.)

- [Freund&Schapire '95]
 - introduced AdaBoost algorithm
 - strong practical advantages over previous boosting algorithms

• experiments using AdaBoost:

[Drucker&Cortes '95]		[Schapire&Singer '98]	
[Jackson&Cravon '96]		[Maclin&Opitz '97]	
[Freund&Schapire '	96]	[Bauer&Kohavi '97]	
[Quinlan '96]		[Schwenk&Bengio '98]	
[Breiman '96]	[Dietterich'98]	

• continuing development of theory & algorithms:

[Schapire,Freund,Bartlett&Lee '97] [Schapire&Singer '98][Breiman '97][Mason, Bartlett&Baxter '98][Grive and Schuurmans'98][Friedman, Hastie&Tibshirani '98]