
Probabilistic Reasoning 

Doug Downey, Northwestern EECS 348 

Spring 2013 



Limitations of logic-based agents 

• Qualification Problem 

– Action’s preconditions can be complex 

– Action(Grab, t) => Holding(t) 
….unless gold is slippery or nailed down or too heavy or 
our hands are full or… 

 

• Brittleness 

– One contradiction in KB => KB entails everything 



Limitations of logic-based agents 

• Qualification Problem 

– Action’s preconditions can be complex 

– Action(Grab, t) => Holding(t) 
….unless gold is slippery or nailed down or too heavy or 
our hands are full or… 

 

• Brittleness 

– One contradiction in KB => KB entails everything 

P(success) = 0.97 

Instead of aa, 
P(a) + P(a) = 1 



Events 

• Event space   

– E.g. for dice,  = {1, 2, 3, 4, 5, 6} 

• Set of measurable events S  2 

– E.g., 
 = event we roll an even number = {2, 4, 6}  S 

– S must: 

• Contain the empty event  and the trivial event  

• Be closed under union & complement 

– ,   S      S     and       S    -   S 



Probability Distributions 

 

 

 

 

 

 

 Can visualize probability as fraction of area 

 
  
  
  

 

   

 



Probability Distributions 

• A probability distribution P over (, S) is a mapping 
from S to real values such that: 

 P()  0 

 P() = 1 

 ,   S       =     P(   ) = P() + P( ) 

 

 
 

  
  
  

 

   

 



Probability: Interpretations & 
Motivation 

• Interpretations 

– Frequentist 

– Bayesian/subjective 

• Why use probability for subjective beliefs? 

– Beliefs that violate the axioms can lead to bad 
decisions regardless of the outcome [de Finetti, 1931] 

– Example: P(A) = 0.6, P(not A) = 0.8 ? 

– Example: P(A) > P(B) and P(B) > P(A) ? 



Random Variables 

• A random variable is a function from  to a 
value 

– A short-hand for referring to attributes of events. 

• E.g., your grade in this course 

– Let  = set of possible scores on hmwks and test 

– Cumbersome to have separate events GradeA, 
GradeB, GradeC 

– So instead define a random variable Grade 

• Deterministic function from  to {A, B, C} 



Distributions 
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• Called “marginal” because they apply to only 
one r.v. 

 



Joint Distribution 

       P(Intelligence, Grade) 
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Joint Distribution 

 

 
Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

Joint Distribution specified with 2*3 – 1 = 5 values 



Joint Distribution 

 

 
Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

P(Grade = A, Intelligence = Low)? 0.07 

  



Joint Distribution 

 

 

 

 

 

 

 

 

Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

P(Grade = A)?  

  

0.07 + 0.18 = 0.25 



Joint Distribution 

 

 

 

 

 

 

 

 

Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

P(Grade = A  Intelligence = High)? 

0.07 + 0.18 + 0.09 + 0.03 = 0.37 

=> Given the joint distribution, we can compute 
probabilities for any proposition by summing events. 



Conditional Probability 

• P(Grade = A | Intelligence = High) = 0.6  

– the probability of getting an A given only Intelligence = 
High, and nothing else. 
• If we know Motivation = High or OtherInterests = Many, the 

probability of an A changes even given high Intelligence 

• Formal Definition:  

– P(  |  ) = P( ,  ) / P( ) 

• When P( ) > 0 



Conditional Probability 

 

 
Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

P(Grade = A | Intelligence = High) ? 
P(Grade = A, Intelligence = High) = 0.18 
P(Intelligence = High) = 0.18+0.09+0.03 = 0.30 
=> P(Grade = A | Intelligence = High) = 0.18/0.30 = 0.6 



Conditional Probability 

 

 
Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

P(Intelligence | Grade = A)? Intelligence 

Low High 

0.28 0.72 



Conditional Probability 

 

 
Intelligence 

Low High 

Grade 

A 0.07 0.18 

B 0.28 0.09 

C 0.35 0.03 

P(Intelligence | Grade)? 

Intelligence 

Low High 

Grade 

A 0.28 0.72 

B 0.76 0.24 

C 0.92 0.08 

Actually three separate distributions, one for 
each Grade value  
(has three independent parameters total) 



Chain Rule 

 

 

 

 

 

• E.g., P(Grade=B, Int. = High)  
 = P(Grade=B | Int.= High)P(Int. = High) 

• Can be used for distributions… 

– P(A, B) = P(A | B)P(B) 



Queries 

• Given subsets of random variables Y and E, and 
assignments e to E 
– Find P(Y | E = e) 

• Answering queries = inference 
– The whole point of probabilistic models, more or less 

– P(Disease | Symptoms) 

– P(StockMarketCrash | RecentPriceActivity) 

– P(CodingRegion | DNASequence) 

– P(PlayTennis | Weather) 

– …(the other key task is learning) 



Answering Queries: Summing Out 

 

 
Intelligence = Low Intelligence=High 

Time=Lots Time=Little Time=Lots Time=Little 

Grade 

A 0.05 0.02 0.15 0.03 

B 0.14 0.14 0.05 0.0 

C 0.10 0.25 0.01 0.02 

P(Grade| Time = Lots)? 

 
 






ceIntelligenValv

LotsTimevceIntelligenGradeP |,



Answering Queries: Solved? 

• Given the joint distribution, we can answer any 
query by summing 

• …but, joint distribution of 500 Boolean variables has  
2^500 -1 parameters (about 10^150) 

• For non-trivial problems (~25 boolean r.v.s or more), 
using the joint distribution requires 

– Way too much computation to compute the sum 

– Way too many observations to learn the parameters 

– Way too much space to store the joint distribution 



Conditional Independence (1 of 3) 

• Independence 

–P(A, B) = P(A)*P(B), denoted A  B 

– E.g. consecutive dice rolls 

• Gambler’s fallacy 

–Rare in (real) applications 
 



Conditional Independence (2 of 3) 

• Conditional Independence 
– P(A, B | C) = P(A | C) P (B | C), denoted (A  B | C) 

– Much more common 

– E.g.,  
(GetIntoNU  GetIntoStanford | Application), 
but NOT (GetIntoNU GetIntoStanford) 



Conditional Independence (3 of 3) 
• How does Conditional Independence save the day? 

P(NU, Stanford, App) =  
P(NU|Stanford, App)*P(Stanford |App)*P(App) 

Now, (A  B | C) means P(A | B, C) = P(A | C) 

So since (NU  Stanford | App), we have 
P(NU, Stanford, App) =  
P(NU | App)*P(Stanford |App)*P(App) 

Say App  {Good, Bad} and School  {Yes, No, Wait} 

All we need is 4+4+1=9 numbers 
(vs.  3*3*2-1=17 for the full joint) 

• Full joint has size exponential in # of r.v.s 
Conditional independence eliminates this! 



Bayes’ Rule 

• P(A | B) = P(B | A) P(A) / P(B) 

• Example: 
P(symptom| disease) = 0.95, P(symptom| disease) = 0.05 
P(disease = 0.0001) 
 
P(disease | symptom)  
 = P(symptom | disease)*P(disease) 
  P(symptom) 
 
 =  0.95*0.0001  =   0.002 
    0.95*0.0001 + 0.05*0.9999 

 



What have we learned? 

• Probability – a calculus for dealing with uncertainty 
– Built from small set of axioms (ignore at your peril) 

• Joint Distribution P(A, B, C, …) 
– Specifies probability of all combinations of r.v.s 
– Intractable to compute exhaustively for non-trivial 

problems 

• Conditional Probability P(A | B) 
– Specifies probability of A given B 

• Conditional Independence 
– Can radically reduce number of variable combinations we 

must assign unique probabilities to. 

• Bayes’ Rule 


