Probabilistic Reasoning

Doug Downey, Northwestern EECS 348 Spring 2013

Limitations of logic-based agents

- Qualification Problem
 - Action's preconditions can be complex
 - Action(Grab, t) => Holding(t)
 unless gold is slippery or nailed down or too heavy or our hands are full or...
- Brittleness
 - One contradiction in KB => KB entails everything

Limitations of logic-based agents

- Qualification Problem
 - Action's preconditions can be
 - Action(Grab, t) => Holding(t)
 unless gold is slippery or nailed down or too heavy or our hands are full or...
- Brittleness
 - One contradiction in KB => KB entails everything

Instead of $a \land \neg a$, P(a) + P($\neg a$) = 1

P(success) = 0.97

Events

• Event space Ω

- E.g. for dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$

• Set of measurable events $S \subseteq 2^{\Omega}$

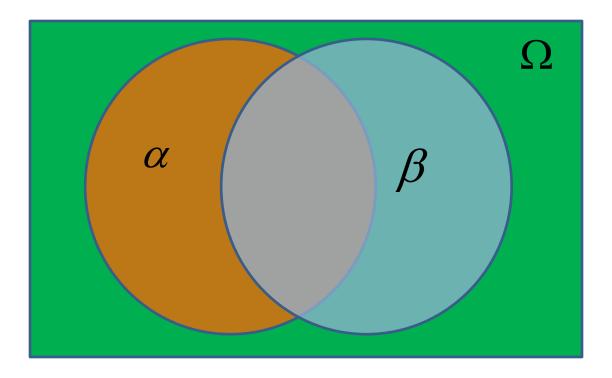
– E.g.,

 α = event we roll an even number = {2, 4, 6} \in *S*

- *S* must:
 - Contain the empty event $\ensuremath{\varnothing}$ and the trivial event Ω
 - Be closed under union & complement

 $-\alpha, \beta \in S \to \alpha \cup \beta \in S \quad \text{and} \quad \alpha \in S \to \Omega - \alpha \in S$

Probability Distributions

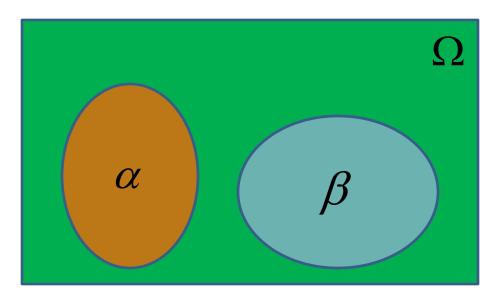


Can visualize probability as fraction of area

Probability Distributions

A probability distribution P over (Ω, S) is a mapping from S to real values such that:

 $P(\alpha) \ge 0$ $P(\Omega) = 1$ $\alpha, \beta \in S \land \alpha \cap \beta = \emptyset \longrightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$



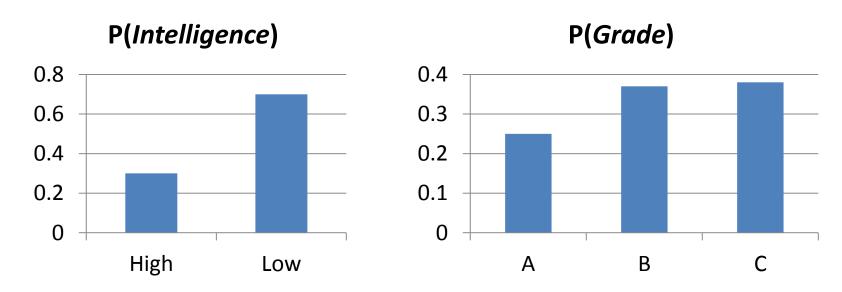
Probability: Interpretations & Motivation

- Interpretations
 - Frequentist
 - Bayesian/subjective
- Why use probability for subjective beliefs?
 - Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 1931]
 - Example: P(A) = 0.6, P(not A) = 0.8 ?
 - Example: P(A) > P(B) and P(B) > P(A)?

Random Variables

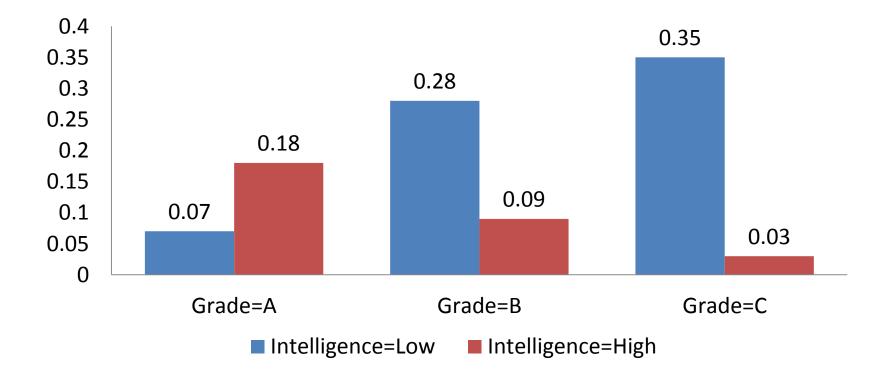
- A random variable is a function from Ω to a value
 - A short-hand for referring to *attributes* of events.
- E.g., your grade in this course
 - Let Ω = set of possible scores on hmwks and test
 - Cumbersome to have separate events GradeA, GradeB, GradeC
 - So instead define a random variable *Grade*
 - Deterministic function from Ω to {A, B, C}

Distributions



 Called "marginal" because they apply to only one r.v.

P(Intelligence, Grade)



		Intelligence			
		Low High			
Grade	А	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

Joint Distribution specified with 2*3 - 1 = 5 values

		Intelligence			
		Low High			
Grade	А	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

P(Grade = A, Intelligence = Low)? 0.07

		Intelligence			
		Low High			
Grade	А	0.07	0.18		
	В	0.28	0.09		
	С	0.35	0.03		

P(Grade = A)? 0.07 + 0.18 = 0.25

		Intelligence		
		Low High		
Grade	А	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

 $P(Grade = A \lor Intelligence = High)?$

0.07 + 0.18 + 0.09 + 0.03 = 0.37

=> Given the joint distribution, we can compute probabilities for any proposition by summing events.

- P(*Grade* = A | *Intelligence* = High) = 0.6
 - the probability of getting an A given **only** *Intelligence* = High, and nothing else.
 - If we know *Motivation* = High or *OtherInterests* = Many, the probability of an A changes even given high *Intelligence*
- Formal Definition:

$$-P(\alpha \mid \beta) = P(\alpha, \beta) / P(\beta)$$

• When $P(\beta) > 0$

		Intelligence		
		Low High		
Grade	А	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(*Grade* = A | *Intelligence* = High) ? P(*Grade* = A, *Intelligence* = High) = 0.18 P(*Intelligence* = High) = 0.18+0.09+0.03 = 0.30 => P(*Grade* = A | *Intelligence* = High) = 0.18/0.30 = **0.6**

		Intelligence		
		Low	High	
Grade	А	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Intelligence Grade = A)?	Intelligence	
	Low	High
	0.28	0.72

		Intelligence			
		Low High			
Grade	А	0.28	0.72		
	В	0.76	0.24		
	С	0.92	0.08		

P(Intelligence | Grade)?

Actually three separate distributions, one for each *Grade* value (has three independent parameters total)

Chain Rule

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid X_{i-1} = x_{i-1}, \dots, X_1 = x_1)$$

- E.g., P(Grade=B, Int. = High)
 = P(Grade=B | Int.= High)P(Int. = High)
- Can be used for distributions...

-P(A, B) = P(A | B)P(B)

Queries

- Given subsets of random variables Y and E, and assignments e to E
 - Find P(Y | E = e)
- Answering queries = **inference**
 - The whole point of probabilistic models, more or less
 - P(Disease | Symptoms)
 - P(StockMarketCrash | RecentPriceActivity)
 - P(CodingRegion | DNASequence)
 - P(PlayTennis | Weather)
 - ...(the other key task is **learning**)

Answering Queries: Summing Out

		Intellige	nce = Low	Intelligence=High	
		Time=Lots	Time=Little	Time=Lots	Time=Little
	А	0.05	0.02	0.15	0.03
Grade	В	0.14	0.14	0.05	0.0
	С	0.10	0.25	0.01	0.02

P(Grade | Time = Lots)?

 $\sum_{v \in Val (Intelligen ce)} P(Grade, Intelligen ce = v | Time = Lots)$

Answering Queries: Solved?

- Given the joint distribution, we can answer any query by summing
- ...but, joint distribution of 500 Boolean variables has 2^500 -1 parameters (about 10^150)
- For non-trivial problems (~25 boolean r.v.s or more), using the joint distribution requires
 - Way too much computation to compute the sum
 - Way too many **observations** to learn the parameters
 - Way too much space to store the joint distribution

Conditional Independence (1 of 3)

- Independence
 - -P(A, B) = P(A)*P(B), denoted $A \perp B$
 - -E.g. consecutive dice rolls
 - Gambler's fallacy
 - -Rare in (real) applications

Conditional Independence (2 of 3)

- Conditional Independence
 - -P(A, B | C) = P(A | C) P(B | C), denoted $(A \perp B | C)$
 - Much more common
 - E.g., (GetIntoNU \perp GetIntoStanford | Application), but **NOT** (GetIntoNU \perp GetIntoStanford)

Conditional Independence (3 of 3)

- How does Conditional Independence save the day? P(NU, Stanford, App) =P(NU|Stanford, App)*P(Stanford |App)*P(App) Now, $(\mathbf{A} \perp \mathbf{B} \mid \mathbf{C})$ means $P(\mathbf{A} \mid \mathbf{B}, \mathbf{C}) = P(\mathbf{A} \mid \mathbf{C})$ So since ($NU \perp Stanford \mid App$), we have P(NU, Stanford, App) =P(NU | App)*P(Stanford | App)*P(App) Say $App \in \{Good, Bad\}$ and $School \in \{Yes, No, Wait\}$ All we need is 4+4+1=9 numbers (vs. 3*3*2-1=**17** for the full joint)
- Full joint has size **exponential** in # of r.v.s Conditional independence eliminates this!

Bayes' Rule

- P(A | B) = P(B | A) P(A) / P(B)
- Example:

P(symptom | disease) = 0.95, P(symptom | ¬disease) = 0.05 P(disease = 0.0001)

P(disease | symptom) = P(symptom | disease)*P(disease) P(symptom)

> = 0.95*0.0001 = **0.002** 0.95*0.0001 + 0.05*0.9999

What have we learned?

- Probability a calculus for dealing with uncertainty
 Built from small set of axioms (ignore at your peril)
- Joint Distribution P(A, B, C, ...)
 - Specifies probability of all combinations of r.v.s
 - Intractable to compute exhaustively for non-trivial problems
- Conditional Probability P(A | B)
 - Specifies probability of A given B
- Conditional Independence
 - Can radically reduce number of variable combinations we must assign unique probabilities to.
- Bayes' Rule