Machine Learning (in 20 minutes or less)

Doug Downey

Machine Learning

- "The study of computer programs that improve automatically with experience"
 T. Mitchell *Machine Learning*, 1998
- Used heavily in:
 - Bioinformatics, robotics, marketing/advertising, recommendations systems, information retrieval, fraud detection, handwriting/speech recognition, etc., etc...

Example Machine Learning Tasks

How likely is person x to default on a loan?

What is the location of robot x?

Is document x about "baseball"?

Learning a function from examples

Given: examples of a function f for various inputs x:

```
-\{(\mathbf{x}^1, f(\mathbf{x}^1)), ..., (\mathbf{x}^n, f(\mathbf{x}^n))\}
```

- **Goal:** Estimate *f*
 - Input $\mathbf{x} = (x_1, ..., x_d)$; individual features x_i
 - Output $f(\mathbf{x})$
- Probably the most common machine learning task formulation (though there are others)

Learn function from $\mathbf{x} = (x_1, ..., x_d)$ to $f(\mathbf{x}) \in \{0, 1\}$ given labeled examples $(\mathbf{x}, f(\mathbf{x}))$

Representation

- In general, inputs and outputs can be
 - Nominal (e.g. Gender)
 - Ordinal (e.g. small, medium, large)
 - Numeric (e.g. Years of Education, probability of credit default, etc.)
- Predicting a nominal output: classification
 - Thus, predicting whether a document is about politics or sports is an instance of **Text Classification**
- Predicting a numeric output: regression (typically continuous)

Which classifier is best?

Learn function from $\mathbf{x} = (x_1, ..., x_d)$ to $f(\mathbf{x}) \in \{0, 1\}$ given labeled examples $(\mathbf{x}, f(\mathbf{x}))$

Which classifier is best?

Answer: you don't know

Solutions:

- 1) try many and compare
- 2) Use domain knowledge

What does it mean for an ML algorithm to perform well?

- Metrics
 - Lots of possibilities
 - Classification: accuracy, precision, recall, cost, etc.
 - Accuracy = fraction of examples \mathbf{x} where algorithm's predicted $f(\mathbf{x})$ matches true classification
 - Regression: mean squared error, etc.

What does it mean for an ML algorithm to perform well?

Learn function from $\mathbf{x} = (x_1, ..., x_d)$ to $f(\mathbf{x}) \in \{0, 1\}$ given labeled examples $(\mathbf{x}, f(\mathbf{x}))$

What does it mean for an ML algorithm to perform well?

- We want to know how our algorithm will perform on new inputs
 - So, test on a set of examples from disjoint from training (e.g. 80% train, 20% test)

How to do Machine Learning

- 1) Pick a feature representation for your task
- 2) Compile data
- 3) Choose a machine learning algorithm
- 4) Train the algorithm
- 5) Evaluate the results
- 6) Probably: go to (1)

How to do Machine Learning

- 1) Pick a feature representation for your task
- 2) Compile data
- 3) Choose a machine learning algorithm
- 4) Train the algorithm
- 5) Evaluate the results
- 6) Probably: go to (1)

Feature Engineering

- The art of machine learning
 - Features should be predictive and (relatively) independent
- How likely is person x to default on a loan?
 - FICO score
 - Income
 - Education Level
 - Assets
 - Social Security Number
 - **—** ...

"Bag of words"