First-Order Logic

Doug Downey Northwestern EECS 348 – Intro to Al Based on slides by Stuart Russell

Pros and Cons of Propositional Logic

- Oeclarative: pieces of syntax correspond to facts
- Allows partial/disjunctive/negated info
 - Unlike most data structures and DBs
- Compositional:
 - Meaning of A $\scriptstyle \lor$ B derived from meanings of A, B
- Meaning is context-independent
- 8 Very limited expressiveness
 - Can't say "pits cause breezes in adjacent squares" except by writing a sentence for each square

First-order Logic

- Objects
 - Greg, Sheridan Road, 25, blue, Moby Dick (the novel), ...
- Relations
 - Tall, four-lane, perfect square, has color, has read, ...
- Functions
 - Height, father of, square root, ...

FOL: Syntax

ConstantsKingJohn, 2, UCB, ...PredicatesBrother, >, ...FunctionsSqrt, LeftLegOf, ...Variablesx, y, a, b, ...Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$ Equality=Quantifiers $\forall \exists$

Atomic Sentences

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

> Term = $function(term_1, ..., term_n)$ or constant or variable

Complex Sentences

• Formed from simple sentences using connectives:

 $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$

- E.g.,
 - MayorOf(Daley, Chicago) => LivesIn(Daley, Chicago)
 - Eat(Doug, Nachos) ∨ Eat(Doug, Grapes)

Truth in FOL

- A *model* in FOL is a set of objects, and full definitions for relations and functions
- Model enumeration totally infeasible
 - For each relation (of arity k)
 - For each distinct subset of all combinations of k objects...
- Technically, objects/relations in model are mapped to particular KB symbols through an *interpretation*
 - This provides yet more complexity

Universal Quantification

- ∀ <variables> <sentence>
- Everyone at Northwestern is smart:
 ∀x At(x, Northwestern) => Smart(x)
- ∀x P is true in a model m if P is true with any object from m substituted for x in P

Common Mistake to Avoid

• Typically => is the main connective with \forall

Don't use ∧ by mistake, e.g.:
 ∀x At(x, Northwestern) ∧ Smart(x)

Existential Quantification

• ∃ <variables> <sentence>

• Someone at Northwestern is rich: $\exists x \operatorname{At}(x, \operatorname{Northwestern}) \land \operatorname{Rich}(x)$

∃x P is true in a model m if P is true with some object from m substituted for x in P

Common Mistake to Avoid

• Typically \wedge is the main connective with \exists

 Don't use => by mistake, e.g.: ∃x At(x, Northwestern) => Rich(x)

• True if anyone is not at Northwestern!

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$

- Related through negation:
 - $\forall x \text{ Likes}(x, \text{ IceCream}) \Leftrightarrow \neg \exists x \neg \text{ Likes}(x, \text{ IceCream})$
 - ∃*x* Likes(*x*, Broccoli) $\Leftrightarrow \neg \forall x \neg$ Likes(*x*, Broccoli)

Examples!

• Brothers are siblings

 $- \forall x \forall y \operatorname{Brother}(x, y) => \operatorname{Sibling}(x, y)$

• Sibling is symmetric:

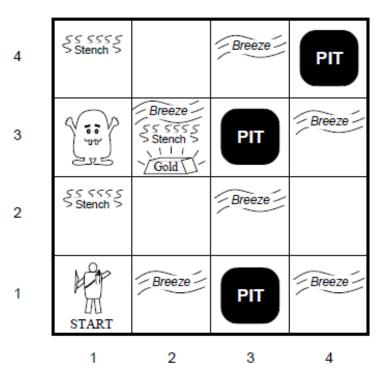
 $- \forall x \forall y$ Sibling(x, y) => Sibling(y, x)

- One's mother is one's female parent
 ∀x ∀y Mother(x, y) <=> (Female(x) ∧ Parent(x, y))
- A first cousin is a child of a parent's sibling...

Payoff in the Wumpus World

- FOL is concise
 - Can define Adjacent(x, y) for squares x, y
 - Then:

 $\forall y \text{ Breezy}(y) \Leftrightarrow$ [$\exists x \text{ Pit}(x) \land \text{Adjacent}(x, y)$]



Interlude: Recap and RoadMap

- So far classical Al
 - Overview and Philosophy of AI (e.g., Turing Test)
 - General search methods and techniques
 - A*, Local Search, CSPs, etc.
 - Logic
 - Logical Agents, Propositional Logic, FOL (inference: today)
- To Come "modern Al"
 - Challenges for classical AI
 - Leveraging data (machine learning)
 - The "big questions" (Larry Birnbaum guest lecture June 2)

Interacting with FOL KBs

 Say a wumpus-world agent perceives a smell and a breeze, but no glitter, at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$

- I.e., does the KB entail any actions at t = 5?
 Answer: Yes, {a / Shoot} <= substitution
- Ask(KB, S) returns the substitutions of S that KB entails

Inference in first-order knowledge bases

- We just said:
 - Ask(KB, S) returns the substitutions of S that KB entails
- How?
 - Propositionalize
 - "Instantiation"
 - Forward/Backward Chaining
 - Resolution

Key Idea: Unification

Resolution use in practice

- Theorem provers
 - Provided major mathematical results
 - "Otter" proved a conjecture (the Robbins algebra) which had been unsolved for 60 years
 - Verification
 - Hardware (adders, CPUs)
 - Algorithms
 - RSA encryption
 - Software
 - Spacecraft control

Logic as a Foundation for AI

• Logic: extremely expressive, powerful

- Theorem provers: useful in practice

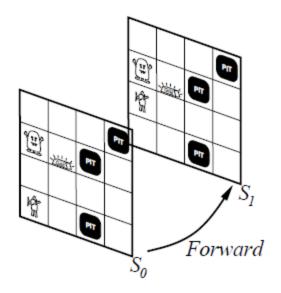
- But:
 - Writing down needed knowledge is hard
 - So-called Frame, qualification, ramification problems
 - => Knowledge acquisition bottleneck
 - Logic systems are "incomplete"
 - Logic systems are brittle

The real world: Sensing and Acting

- Perception
 - three binary inputs [smell, breeze, glitter] at each time t
 - $\forall s, b, t$ Percept([s, b, Glitter], t] => AtGold(t)
- ∀t AtGold(t) => Action(Grab, t) ?
 Infinite Loop!
- ∀*t* AtGold(*t*) ∧ ¬Holding(Gold, *t*) =>
 - Action(Grab, t)

Keeping track of Change

- Facts hold in particular situations
 - E.g., Holding(Gold, t) may be False,
 Holding(Gold, t+8) true
- Agent must keep track of change



Frame Problem

- Effect axioms
 - $\forall t$ Standing((i, j), t) \land Facing(Up, t) \land Action(Forward, t)

=> Standing((i,j+1), t + 1)

- But...HaveArrow(t + 1)?
- "Frame" axioms keep track of what *doesn't* change
 - Action(Forward, t) => (HaveArrow(t) ^ HaveArrow(t + 1))
 - Etc. etc. etc.

Representational Frame Problem

- Historically thought to be extremely tricky
- Can be solved by writing axioms about fluents rather than actions

```
Holding(Gold, t)
<=>
¬ Holding(Gold, t-1) and action at t-1 made it true
or
Holding(Gold, t-1) and no action at t-1 made it false
```

Qualification Problem

- Action's preconditions can be complex
- Action(Grab, t) => Holding(t)

....unless gold is slippery or nailed down or too heavy or our hands are full or...

Ramification Problem

- Actions can have many consequences
 - ∀t Standing((i, j), t) ∧ Facing(Up, t) ∧ Action(Forward, t)

=> Standing((i,j+1), *t* + 1)

– But also

=> In(Basketball, (i, j+1), t + 1)

if I'm holding a basketball

- Writing all these down -- difficult

Knowledge Acquisition

- Remember the Colonel West story
 - We converted text to logic
 - In practice...who does this?
- Qualification, Ramification problems tell us we need tons of "common-sense" knowledge
- The infamous "knowledge acquisition bottleneck"

Knowledge Acquisition: Options

• Type it all in yourself

- Cyc

 Get Web citizens to type it all in – Open Mind

- Extract it from the Web
 - KnowItAll, TextRunner

Logic as a Foundation for AI

- Logic: extremely expressive, powerful
 - Theorem provers: useful in practice
- But:
 - Writing down needed knowledge is hard
 - So-called Frame, qualification, ramification problems
 - => Knowledge acquisition bottleneck
 - Logic systems are "incomplete"
 - Logic systems are brittle

Gödel's Incompleteness Theorem

 Completeness Theorem: All valid statements have proofs in FOL

 Incompleteness Theorem: For any FOL KB enhanced to allow mathematical induction, there are true statements that *can't* be proved.

Gödel's Theorem: Sketch (1)

• Idea:

This statement is false.

• More specifically:

This statement has no proof.

Gödel's Theorem: Sketch (2)

- Assign numbers to sentences, proofs
 - E.g. by sorting by length, then alphabetically
- Consider the sentence α(*j*, *A*)
 - For all numbers *i*, statement #*i* is not a proof for statement #*j* from the axioms A
- Let σ be the sentence α (# σ , A)
 - σ false? But it has a proof!
 - $-\sigma$ true? It's unprovable!

Gödel's Theorem: Ramifications

 Argument: Computers are limited by Gödel's theorem, whereas humans aren't.

• Thus, AI is doomed

Three counter-arguments

 Gödel's theorem applies to math induction systems, e.g. Turing Machines

 Computers aren't *really* Turing machines

"Steve cannot say this sentence is true."
But Steve might be able to do other cool stuff

• Are humans really immune to the theorem?

Logic as a Foundation for AI

- Logic: extremely expressive, powerful
 Theorem provers: useful in practice
 - Theorem provers: useful in practice
- But:
 - Writing down needed knowledge is hard
 - So-called Frame, qualification, ramification problems
 - => Knowledge acquisition bottleneck
 - Logic systems are "incomplete"
 - Logic systems are brittle

Brittleness of Logic Systems

• Consider a KB with just one contradiction

• That KB entails everything

- This is a problem because much of the world is uncertain
 - Perception, action, incomplete information, controversies, etc.

Toward "Modern" AI

• Limitations:

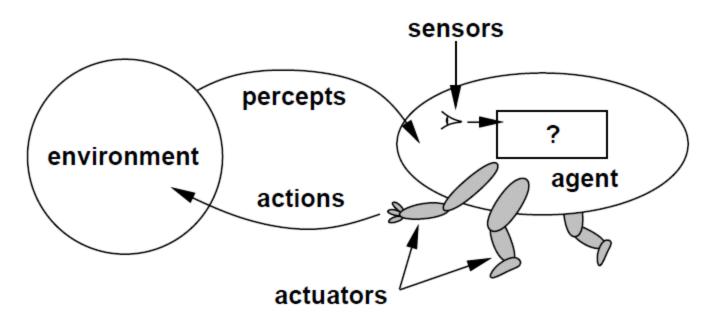
Knowledge Acquisition Bottleneck, Brittleness

- "Modern" directions:
 - Situatedness, embodiment
 - Probability
 - Learning from data

Alternatives: Focus on Behavior

- Argument: we can't even build systems that do what ants do
- In the timeline of evolution, simple cells->ants took much longer than ants->humans
- Let's start by building ants
 - Environment, body can make tasks easier
 - Incrementally solve real problems end-to-end

Intelligent Agents



- Sensory/motor aspect
 - more important, more coupled, more integrated with rest of intelligence than originally thought

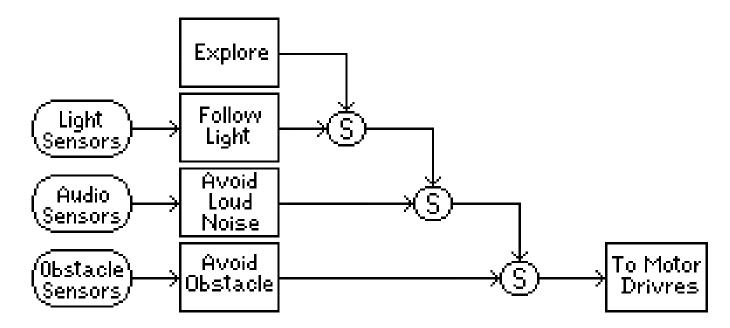
Behavior-based robots as a foundation for AI

• Common-sense knowledge arises from our interaction in the world

- Thus, the road to AI is paved with real-world interaction
 - We must build robots
- Another possibility: softbots

Subsumption Architecture

Behavior-based robotics



Beam-wiki.org

Other "modern" trends

- Biological inspiration, e.g.:
 - Neural networks
 - Hexapod robots drawing on insect nervous systems followed subsumption architecture
- Probability theory

– Handles uncertainty, overcomes brittleness

• Data

Learning from Data

Quantities of data are exploding -- let's learn from it

• "Machine learning"