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ABSTRACT

In previous work we laid out an approach to quantifying
configuration complexity [3]. In that earlier work, we explic-
itly focused on complexity as experienced by expert systems
managers, and thus looked at straight-line configuration pro-
cedures, ignoring the complexity faced by non-experts as
they have to decide what configuration steps to follow. De-
cision complexity is the complexity faced by a non-expert
system administrator—the person providing IT support in
a small-business environment, who is confronted by deci-
sions during the configuration process, and is a measure of
how easy or hard it is to identify the appropriate sequence of
configuration actions to perform in order to achieve a spec-
ified configuration goal. To identify spots of high decision-
making complexity, we need a model of decision complexity
for configuring and operating computing systems. This pa-
per extends previous work on models and metrics for IT
configuration complexity by adding the concept of decision
complexity. As the first step towards a complete model of
decision complexity, we describe an extensive user study of
decision making in a carefully-mapped analogous domain
(route planning), and illustrate how the results of that study
suggest an initial model of decision complexity applicable
to IT configuration. The model identifies the key factors
affecting decision complexity and highlights several inter-
esting results, including the fact that decision complexity
has significantly different impacts on user-perceived diffi-
culty than on objective measures like time and error rate.
We also describe some of the implications of our decision
complexity model for system designers seeking to automate
the decision-making and reduce the configuration complex-
ity of their systems.
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1. INTRODUCTION

Complexity is the most significant challenge confronting
IT systems today. Complexity hinders penetration of new
technology, drastically increases the cost of IT system op-
eration and administration (which today dwarfs the cost of
the IT systems themselves [8]), and makes the systems that
we build hard to comprehend, diagnose, and repair.

In previous work [1], we argued that complexity can be
tackled quantitatively, with a framework that allows system
designers to assess the sources of complexity and directly
measure the effectiveness of potential complexity improve-
ments. We also introduced an initial approach to quanti-
fying the complexity of IT configuration and management
tasks, based on a model of the sources of configuration com-
plexity and a set of metrics derived from that model [3].
This approach, which we summarize in Section 2, focuses
on complexity as perceived by expert users—for example,
experienced system administrators who have long-term ex-
perience with the systems they are managing—and is based
on a structural analysis of the configuration or administra-
tion task itself, assuming all decisions are known and made
correctly.

While this expert-focused approach is proving its value in
practical application within IBM, the fact remains that its
expert-only perspective limits the complexity insights that
it can provide. In particular, a key complexity challenge
lies in improving the experience of the non-expert system
administrator—the person providing IT support in a small-
business environment; the administrator who has expertise
in one platform but is working for the first time with a new
one; the experienced operator trying to deploy a new piece of
technology for the first time; the outsourcer trying to apply
ITIL best practices [11] but facing decision points within the
prescribed processes. In these cases, a different dimension of
complexity becomes paramount: the complexity of figuring
out for the first time what steps to follow and what decisions
to make while performing a complex configuration process.
We call this complexity decision complexity.

However, quantifying decision complexity is not straight-
forward. Unlike the expert-only case, we cannot simply an-
alyze a “gold standard” procedure for complexity. Instead,
we must understand how configuration decisions are made,
what factors influence those decisions, and how those factors
contribute to both perceived difficulty as well as objectively-
measured quantities like time and error rate. And, since our
goal is ultimately to be able to easily quantify points of high
complexity, we must build and use this understanding prag-



matically, without having to resort to complex cognitive or
perceptual modeling.

We quickly realized that the only way to make progress
towards these goals was to formulate an initial model of
decision complexity and move rapidly to collect real data
to test that model and provide insight into factors that af-
fect decision complexity. We designed and conducted an
extensive user study to produce data relating hypothesized
decision complexity factors to measured user perception rat-
ings, task time, and error rate. Because of the difficulties
of conducting a controlled study on actual IT tasks with
a large population of practicing system administrators, we
collected data in an alternative, more accessible domain—
route planning—with an experiment carefully designed to
connect features of decision-making in the route planning
domain with analogous features in the I'T configuration do-
main.

Analysis of our study data reveals several interesting re-
sults. We found that task time was primarily affected by the
number and type of constraints controlling the key decisions,
as well as secondarily by the presence of short-term goal-
related guidance. User-perceived difficulty was affected pri-
marily by the short-term goal-related guidance factor, with
a secondary effect from the presence of status feedback and
only minor effects from constraints. Error rate was affected
by short-term goal-related guidance and position guidance.
The contrasts in these results suggest the hypothesis that de-
cision complexity has multiple influences, and that system
designers can optimize differently to minimize time, error
rate, and perceived difficulty, respectively.

We have created a model from our study results that
relates decision complexity in the route-planning domain
to some of the factors discussed above. Because of the
construction of our experiment, we believe that this model
should apply to decision complexity in the I'T configuration
complexity domain as well, and that it can be used to ex-
tract some initial guidance for system designers seeking to
reduce complexity. However, there is still a clear need for
further extension and validation of the model in actual IT
contexts. We describe some thoughts and future work on
how we intend to accomplish that validation. These are
the next steps to continue the exploration of this crucial
aspect of complexity analysis and can take us closer to a
quantitative framework that can help shape a future with
easier-to-manage, less complex IT infrastructures.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly summarizes our previous work in complexity
modeling for experts. Section 3 discusses the related work.
Section 4 describes our initial hypothesized model for deci-
sion complexity that we used to construct the user study,
which is in turn described in Sections 5 and 6. The results
and analysis of our study data are presented in Section 7.
Finally, we describe our next steps in Section 8, and con-
clude in Section 9.

2. COMPLEXITY MODEL FOR EXPERTS

To provide context for our work on decision complexity,
we first summarize our previous work on complexity model-
ing for experts, as described in [1, 3]. Our previous approach
focused on creating a standard framework for modeling and
quantifying configuration complexity from the point of view
of an expert administrator. The intended use of this model
and related metrics was twofold: first, to provide an easy

way for system designers to obtain quantitative insight into
the sources of complexity in their designs (without the need
for costly user studies), and second to serve as the founda-
tion for a competitive complexity benchmark.

The approach we followed is based on process analysis.
The input to our expert-level complexity model is a cod-
ified record of the actual configuration procedure used to
accomplish some administrative task on the IT system un-
der test, captured from actual execution or documentation.
This record contains information on the configuration con-
texts present in the procedure, the detailed sequences of ac-
tions performed within those contexts, and the data items
and data flow between actions, as managed by the system
administrator. The model uses features of that record to ex-
tract complexity metrics in three dimensions: (1) execution
complexity, reflecting the complexity of actually perform-
ing the needed action sequences; (2) parameter complex-
ity, reflecting the complexity of supplying the correct values
of all needed information to the configuration actions; and
(3) memory complexity, reflecting the burden of parameter
management and data item tracking carried by the system
administrator. Metrics are calculated across the entire pro-
cedure to allow cross-procedure comparison, and are also
computed at a per-action level, allowing identification of
complexity “hot spots” and targeting of future development
focus.

The metrics computed by our expert-level model are all
objective scores, based solely on the structure of the pro-
cedure record. Likewise, the procedure record reflects the
optimal configuration path as identified by an experienced
expert, with no mis-steps or decision branches. Thus the
results of the analysis are objective and comparable across
systems and environments, and they reflect inherent struc-
tural complexities present in the configuration procedures,
but they do not capture any of the decision complexity in
identifying the right procedure or choosing the correct de-
cision branches within that procedure. Hence the focus of
this work is on extending the complexity model to include an
initial understanding of the impact of decision complexity.

3. RELATED WORK

Understanding decision complexity would appear to be
in the purview of human-computer interaction research and
psychology. However, the work in those areas [13, 5, 10,
12, 15, 14, 6, 9, 4] has concentrated on understanding how
human beings make decisions in general. And the cognitive
or perceptual models in those field are very complex and
not practical to be directly borrowed to benchmark com-
plexity. In addition, none of those models were developed
under the specific goal of understanding how non-expert sys-
tem administrators make decisions in performing a complex
configuration process.

For example, the traditional normative models of decision
making prescribe that people assign either an objective or
subjective value to an option and then factor in the opin-
ion’s probability [5, 14]. It is almost impossible to measure
such perceptual value and probability in the real world in-
cluding IT configuration, not to mention that research has
shown a variety of ways in which people deviate from the
normative models. For another example, the Prospect The-
ory [10], which provides a general theory of decision making
that explains how people’s reasoning deviates from norma-
tive models, models people’s decisions by a descriptive m(p)



function, which represents the subjective perception of prob-
abilities [14]. Obviously, it is not very practical to calculate
such functions in the real world.

4. MODEL AND HYPOTHESIS

To understand decision complexity, we initially approached
it with an attempt to build a low-level model that could
capture and compute every aspect of a human-driven con-
figuration procedure. We then realized that such a model
requires a detailed understanding of human cognitive pro-
cesses. This approach is too complex for practical use, so
we decided to re-approach the problem from a high level,
to understand what factors influence decision making, and
how those factors contribute to decision complexity.

To address these questions, we formulated an abstract
high-level model. As shown in table 1, the three major fac-
tors we consider in our model are constraints, guidance and
consequences. We choose these factors based on results from
the HCI literature [15] as well as our own assessment of real
IT configuration procedures, where the user is given various
types of guidance and needs to make different decisions while
facing various constraints. The decisions made by the user
then generate different consequences in term of a specific
user goal.

For example, one IT procedure we studied involved the
installation of a secured web portal software stack, includ-
ing a portal server, directory server, application middle-
ware server, and a security infrastructure. The procedure
contained several decisions concerning software version se-
lection, feature selection (e.g., should the portal support
SSL-based secure access), configuration alternatives (e.g.,
authentication mechanisms), and sequencing.

In this procedure, guidance was provided in the form of
product manuals, a step-by-step “how-to”-style guide [7],
and on-screen prompts. The procedure involved several con-
straints, such as incompatibilities between different versions
of the constituent software products, different feature sets
across different software versions, and resource consumption
requirements. Each of the several decision points in the pro-
cess (for example, choosing which security protocol to use)
resulted in consequences relative to the original goal—either
performance or functionality implications in the resulting
portal installation, or the ability to achieve the goal state
at all. An example of the latter style of consequences is a
case where certain product versions could not be co-located
on the same machine. If the decision was made to co-locate
the incompatible versions, the procedure resulted in a non-
working system.

Of the guidance, constraints, and consequences factors,
guidance is of particular interest because it is the major
source of information that user will consult with in making a
decision. Analogous to work in the HCI area [15], we further
define the formulation of a guidance system in table 2. The
definition is based on what a good guidance system should
provide.

In both tables 1 and 2, we give examples in the IT config-
uration domain to show the ground on which we build the
model. For example, in our portal case study, the “how-
to” guide provided global information guidance about the
structure of the entire task; specific dialog boxes in the in-
stall wizards for the portal’s components provided short-
term goal-oriented guidance for configuring each separate
component. There was little explicit position information

except what could be gleaned from matching screenshots in
the how-to guide with the on-screen display. Confounding
information was present in the standalone documentation
for each product component of the overall portal stack.

As stated above, our goal in constructing the 3-facet model
of guidance, constraints, and consequences is to obtain a
high-level understanding of the forces involved in creating
decision complexity for IT operational procedures. Thus
with the key factors identified, the next step is to validate
their impact on decision complexity, and to begin to quan-
tify their relative effects. If we can do this, we can provide a
high-level framework for assessing decisions in I'T processes
and for providing guidance to system designers seeking to
reduce decision complexity.

5. APPROACH

To validate our model, ideally we should conduct a user
study where users perform a real IT configuration proce-
dure. However we face some obvious difficulties here. First
it is challenging to obtain a large set of users with a con-
sistent level of IT experience, especially those with system
administration training. Second, it is difficult to finely tune
a real IT configuration procedure to validate each compo-
nent of our model in a controlled, reproducible environment
that allows data collection from large numbers of users.

Facing these challenges, we searched for an alternative do-
main that would allow us to carefully control its elements,
and that offered similar characteristics to the IT configura-
tion domain, so that a model built on it could be mapped
back to IT configuration domain. We ended up settling on
the domain of route planning.

In route planning, users navigate a set of interconnected
paths to arrive at a prespecified destination within certain
limits of time and distance traveled. As they navigate, they
make multiple decisions based on information available to
them at the time. If they are unfamiliar with the map,
the users are effectively non-experts, and thus face decision
complexity at each branch point. As shown in table 3, the
route planning domain contains examples for all factors that
we define in our model. In addition, it is familiar to ordinary
users with or without an IT administration background, so
user training is unnecessary. Using this domain, we can
conduct a user study to learn how people make decisions in
the context of performing a prescribed procedure, which in
our case is navigating a car from one point to another, and
extrapolate the results back to the I'T configuration domain.
While the mapping is clearly not perfect, we believe that it
is sufficient to provide a high-level understanding of how our
model factors affect decision complexity, giving us an initial
step towards the goal.

6. USER STUDY DESIGN

We designed an on-line user study that could be taken
by participants over the web. The study included multiple
experiments with different test cases. Each test case var-
ied the levels of our key factors (guidance, constraints, con-
sequences) and measured the user’s time, correctness, and
reported difficulty ranking.

6.1 Experiment and test cases

We designed 3 experiments for our user study. Each user
was assigned an experiment randomly after he logged in.



Table 1: High-level model of decision making

Factors Definition Configuration analogy (examples)
Constraints Constraining conditions that restrict compatibility between software products,

users to avoid or make certain decisions | capabilities of a machine
Guidance Guiding information on decisions documentation, previous configuration experience
Consequence | Results from the decision functionality, performance

Table 2: Sub-factors within guidance

Sub-factors of Guidance | Definition

Configuration analogy (examples)

Global information
a set of short-term goals.

Providing an overview of the situation across

A “Redbook” describing the options for combining
multiple software products into a solution

Short-term goal-oriented
information

Information needed for a particular short-term
goal, or goal of current interest is co-located
and directly answers the major decision.

A configuration wizard, such as a database tuning
wizard

Confounding information
goals are not presented.

Extraneous or misleading info not related to

A manual providing application configuration
instructions for a different OS platform than
the one being used

Position information

provided.

Information for identifying relative order of
current decision across a set of decisions is

Feedback on results of last configuration action;
a task-level progress bar

Overview of the testcase displa
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Figure 1: The screen-shot of a running testcase.

Fach experiment consists of 6 sequential test cases and 1
warm-up test case in the beginning. We have 10 possible test
cases (not including the warm-up) in total, which we care-
fully designed and believe will help us find out the answers
to the questions that we discussed in previous section 4.
Table 4 summarizes the test cases we used in the study.
We also carefully selected the set of test cases to be included
in each experiment so that we can maximize our data set.
The major parameters we built into our test cases are:

e Traffic: we have two types of traffic update, repre-
senting constraints in our complexity model. Static
update presents the global traffic updates to the user
in the beginning of the test case, while the dynamic
update only discloses the local traffic to the user when
he arrives at the traffic-related intersection or road.
This is the equivalent of listening to a traffic report
versus running into a traffic jam, and in the IT do-
main is analogous to prespecified versus unexpected
constraints (such as version compatibility). For dy-
namic update, we further design two types of update:
road close and travel time update. The former is
analogous to the constraints in the IT configuration
domain that eliminate the viability of one installation
path, and cause user to undo and look for a new path,
while the latter is an analogy to those constraints that
only change the resulting performance of an otherwise-
viable configuration.

e Expert path: an expert path is the suggested route
for user without considering the traffic. It is analo-
gous to the previous experience a user or expert brings
to configure the same system, or the information pre-
sented in a “how-to” or step-by-step walkthrough guide.

e GPS: similar to the advanced Global Position Sys-
tem people use when driving in the real world, it is
analogous to an omniscient expert that directs people
during a configuration procedure, which we believe re-
quires the least mental effort from the user in making
decisions.



Table 3: Route planning domain based on the model

Factors

Route planning domain

Constraints

Traffic

Guidance (Global info)

Map, Expert path

Guidance (Goal-oriented info)

GPS

Guidance (Position info)

Current position indicator

Consequence

Reach the destination or not

Table 4: Summary of test cases; a x means the parameter is not presented while a check means the opposite.

No | Pos indicator | Traffic type | Update type | Path diff | Expert path | GPS
1 N X X X X
2 v static travel time X X
3 Vi dynamic road close X X
4 N dynamic travel time X X
5 N X X v X
6 Vi dynamic travel time Vv X
7 Vi dynamic travel time X Vv
8 N dynamic road close bigger X X
9 N dynamic travel time bigger X X
10 X X X X X

e Position indicator: a pink circle on the map indi-
cates current location of the user. It is analogous to
the position information defined in Table 2, i.e. the
feedback information in IT context, which provides
feedback on the current state of the system and the
effect of the previous action.

e Path differences: different length of routes from the
starting point to the destination reflects different con-
sequences resulted from user’s decisions. To study the
impact of consequences on the decision complexity, we
vary the path difference for different maps so that some
maps have small path differences among all possible
routes, while some maps have big path differences.

6.2 Perspective of the user

In each test case, the user is presented with a map consist-
ing of a series of road segments and intersections. Each road
segment is marked with a travel time. The pink circle indi-
cates current position of the user in the map. The goal is to
navigate a path from the stating point (home) to the airport
in the minimum amount of driving time, using the naviga-
tion buttons at the bottom of the interface. Each test case
uses a slightly different map to avoid learning effects; how-
ever, all maps are topographically equivalent with the same
set of decision points. The optimal path differs across test
cases, but note that only one path is optimal in each map.
This scenario is roughly equivalent to the IT configuration
problem of being given a new system to install/configure
and a set of documentation laying out possible system- and
resource-dependent sequences of configuration actions. Just
as the user has to work out the optimal path through the
map, the I'T administrator has to make the configuration de-
cisions at each branch point in the IT setup process, based
on the state of the system and the visible paths ahead.

To maximize the quality of our data, we requested users
not to multi-task or walk away from the system while a test
case was in progress. In some test cases, users may have
encountered traffic or other obstructions that changed the

travel time for certain road segments or rendered them im-
passable. Users may also have received different levels of
guidance that may have helped them to identify the right
path. Figure 1 shows an introductory page, with all possible
components annotated. This is what the user saw after log-
ging in and before starting the experiment. Note that not
all components showed up in each test case.

In the beginning of the experiment, we ask the user about
his or her background.

e What is your gender? (Male / Female)

e Do you have formal or informal training in mathemat-
ics, computer science and/or engineering? (Yes / No)

e How long have you been driving? (specify years)

e How often do you drive a car? (Every day / A few
times a week / A few times a month / Rarely / Never—
do not drive)

e Do you use online map services like Mapquest, Yahoo
Maps, Google Maps, etc when you need to drive to an
unfamiliar destination? (Always / Frequently / Occa-
sionally / Never)

e How would you rate your proficiency with map-reading
and navigating based on maps? (Excellent / Very good
/ Good / Mediocre / Poor)

At the end of the set of test cases, we ask the user to rank
the test cases according to difficulty on a scale of 1 (easiest)
to 6 (most difficult). Note that as the user proceeds through
the experiment, he has the opportunity to input a reminder
at the end of each test case to help him remember which one
is which when he gets to the end of the experiment.

6.3 Implementation

We implemented our on-line user study using a JAVA
Servlet-based architecture with server-side collection of data,
including timings. The web pages are dynamically generated
based on the data submitted by the user. The experiment



server records user navigation sections (i.e. decision points)
as well as the real time he takes to complete each test case.
The server also compares the user’s path with the optimal
path for each map.

We used XML-based experiment configuration files so that
we can not only design various test cases and experiments
using a standard data format, but also finely control each
parameter of the study by simply modifying the correspond-
ing XML file.

We used JPEG images to represent the steps in the ex-
periment. In the beginning of the experiment and after each
navigation action, a JPEG image was presented to the user.
In our experiments, these were images of the route map
with the appropriate information presented to the user (such
as their current position, or the suggested expert-supplied
path). The implementation consists of approximately 3100
lines of JAVA and 211 JPEG files.

One of our goals in implementing the user study is to de-
sign a general framework so that it can be easily exploited
for similar experiments. The core of our JAVA Servlet is
a general user-driven decision engine which can present in-
formation, react and record all according to external XML-
based configurations. By supplying different sets of JPEG
images, along with corresponding XML files, our experiment
framework should be adaptable to explore many other as-
pects of IT administration and complexity. For example,
the map images could be replaced by screen-shots of actual
configuration dialogs (with corresponding XML files). We
discuss this possibility later in Section 8 as a possible next
step in validating our results in a more directly-IT-relevant
context.

6.4 Two-stage User Study

Our user study consisted of two stages. In the first stage,
37 users from IBM T.J. Watson Lab participated. In the
second stage, we revised the order of test cases in each ex-
periment based on the analysis of the user data from the
first stage. Note that we did not change the content of the
test cases. 23 users from IBM Almaden Lab, University of
California, Berkeley, and Harvard University participated.

In both stages, we advertised for participants via emails.
The duration of the study for each user was around 30 min-
utes. The 10 participants who did the best at the experi-
ments were automatically entered into a random drawing;
two won a $50 gift certificate each.

7. RESULTSAND ANALYSIS
7.1 Metrics

We use three metrics to evaluate the study.

The AvgTimePerStep is the average time that users spent
in one step in one test case. Note that we have different
number of steps in different test cases. The UserRating is
the average rank specified by users. Recall that users were
asked to rank test cases from 1 to 6 in term of difficulty,
where 6 indicates the most complex/difficult test case and 1
indicates the easiest one. If they felt that two (or more) test
cases have approximately the same level of difficulty, they
may give them the same rank. The ErrorRate is the percent
of users who failed to find the optimal path for a test case.
Note that for each test case, we have only one optimal path.

7.2 Qualitativeresults
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Figure 2: User rating and time; Avg Std for time
over all testcases: 4368 milliseconds

To reduce the variation across users, for each user we nor-
malized his AvgTimePerStep based on test case 7 (see Ta-
ble 4), where we provided GPS turn-by-turn guidance. This
test case involves no decision making at all on the user’s
part, and thus reflects each user’s baseline speed of navigat-
ing through the user interface of the study; in all cases each
user spent the least amount of time in testcase 7,

Figure 2 shows that most parts of the trends for UserRat-
ing and normalized AvgTimePerStep are tracked, except for
test case 8, which users felt was difficult but in which they
only spent a small amount of time. In figure 3, we see similar
tracking between ErrorRate and normalized AvgTimePer-
Step, except that in test case 10, where all users who did
that test case spent more time due to the lack of the posi-
tion indicator. Interestingly all users were able to find the
optimal path in this test case. One possible reason for this
is that when there was no position indicator, users had to
become more careful in each step and spent more time in
tracking their movement and planning their routes. As a
result, the ErrorRate was greatly reduced.

Overall, this result confirms that decision complexity has
different impacts on:

e User-perceived difficulty
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Figure 3: Error rate and time; Avg Std for time over
all testcases: 4368 milliseconds




Table 5: Summary of complexity factors

Model factors Constraints | Guidance (global) Guidance (goal) Guidance (position) | Consequences

Test case factors Test case no | Test case order Found optimal or not

Background factors | Gender CS & math background | Driving frequency Online-map usage Proficiency with map
& reading routing

e Objective measures (time and error rate)

Figure 2 and 3 bring out some interesting discussion. How-
ever we can not draw quantitative conclusions from them
because the variation of AvgTimePerStep for each test case
is very large across all users. The average standard deviation
of AvgTimePerStep over all test cases is 4368 milliseconds,
almost half of the maximum AvgTimePerStep.

In an attempt to gain more insight into the data, we fur-
ther analyzed the data in two steps, with results discussed
in the next section:

e Step I: general statistical analysis; treat each test case
measured as an independent data point, with the goal
to identify factors that explain the most variance.

e Step II: pair-wise per-user test case comparisons; get
more insight into specific effects of factor values, with
the goal to remove inter-user variance.

7.3 Quantitativeresults

Table 5 lists all factors that we identified within the study.
The first row lists all factors that we propose in our initial
model. We call them complexity model factors. The second
row includes those test case related factors. The third row
shows all background related factors.

731 Time

Table 6: Baseline analysis of variability for time

Factor Sum Squares
Test case # 32.778
Driving years 17.637

Online-map usage | 7.260
Residual 45.192

Table 7: Analysis of complexity factors for time

Factor Sum Squares
Constraints 16.764
Guidance (goal) | 11.397
Consequence 1.939

As step I, we conduct an ANOVA (Analysis of Variance)

test on AvgTimePerStep using a linear-space regression model.

To see how much variance that we can explain, we first in-
clude test case number, test case order, and all background
related factors (e.g. gender, driving years) in the ANOVA.
Since test case number subsumes all of the factors we ex-
plicitly altered during the experiment, we believe that the
variance that can be explained by test case number should
be a superset of what can be explained by our model factors.
Table 6 is the summary of the ANOVA. We only list those
factors which have significant impact on Sum of Squares. As
we can see, the maximum variability that can be explained

by model factors (those we explicitly varied in the experi-
ment) is 32.778. Interestingly, the length of driving years
contributes 17.637 to the Sum of Squares, indicating experi-
ence is a significant factor. Other factors are not listed due
to their tiny impact. The residual, we believe, comes from
random per-user effects that can’t be explained by either
model factors or user background.

Based on this baseline analysis, we then do an ANOVA
test on our model factors (i.e. constraints, levels of guid-
ance, consequence) to identify those factors that explain
the most variance. We know from our earlier analysis that
at most 32.778 of the sum of squares variance can be ex-
plained by these factors. Table 7 indicates that constraints
and short-term goal related guidance have the most impact
on time, followed by a small amount of affect from conse-
quences. Other factors have very little impact and are not
listed. Note that constraints and guidance together explain
96% of the total variance explainable by model factors.

From this Step I data, we can conclude that the user’s
decision time is primarily influenced by the presence of con-
straints, along with goal-directed guidance such as step-by-
step instructions. The impact of visible consequences is also
present, though at a lower level. The regression fit data
confirms this analysis, showing increased predicted step time
when constraints are present, and decreased time when goal-
directed guidance is provided or consequences are more vis-
ible.

Next, in step II, we aim to remove inter-user variance and
get more insight into specific effects of factor values. Table 8
summarizes our pair-test analysis, providing 95% confidence
intervals. In these tests, we compared the results of a pair of
test cases from a single user, to determine a per-user effect
of factor differences between the test cases. We then aver-
aged across users to test for a significant cross-population
effect. Note that we only list those results which allow us
to discount the null hypothesis, that two test cases have
no difference, with > 95% confidence. This result confirms
what we found in step I, i.e. constraints and guidance (goal)
are two major factors influencing task time. We further dis-
cover that statically-presented constraints (like our static
traffic) actually increase time compared to dynamic con-
straints, likely due to the user’s need to assess the relevance
of the global information at each step of the procedure.

7.3.2 Rating

Similar to our analysis for time, we first do an ANOVA
test on UserRating using test case number, test case order,
and all background related factors. From table 9, we can see
that the maximum variability that can be explained by the
model factors is 51.671. The length of driving years again
has some impact although the impact is small compared to
that in the time case.

We then feed the model factors into the ANOVA test.
Different from what we found in the time case, here short-
term goal related guidance is now the top 1 influential factor,
followed by position guidance. Constraints however only




Table 8: Pair-wise test for time

95% CT 2nd Study 95% CT
static traffic > dynamic (road close) (0.78, 1.07) | static traffic > dynamic (road close) (1, 1)
static traffic > without traffic (0.73, 1.01) | static > dynamic (travel time update) | (0.54, 1.13)
Guidance (goal) | without expert path > with expert path | (0.53, 0.89)

1st Study

Constraints

have small impact on the user’s rating.

The results also show that a third factor, Log(order), im-
pacts UserRating, although at a much lower level than Guid-
ance. The Order factor refers to the sequence in which the
user was shown the various test cases; the presence of the
Log(order) term in the ANOVA implies that there is a bias
to users’ rating, with higher ratings given later in the se-
quence.

Table 11 is the summary for step II - pair-wise test. Al-
though it does not statistically show the impact of guidance
(goal), it confirms the impact of position guidance and con-
straints providing 95% confidence intervals.

Table 9: Baseline analysis of variability for rating

Factor Sum Squares
Test case # 51.671
Driving years | 7.125
Residual 67.087

Table 10: Analysis of complexity factors for rating
Factor Sum Squares
Guidance (goal) 42.272
Guidance (position) | 6.278
Log(order) 2.071
Constraints 1.683

7.3.3 Error rate

The analysis of ErrorRate is different from time and rating
because we only have one data point per test case, i.e. error
rate averaged across all users who finished that test case. So
it is hard do any further statistical analysis. However from
figure 3, we can still draw two conclusions. First, all users
were able to find the optimal path in test case 7, where we
provided GPS turn-by-turn guidance. So we can conclude
that providing short-term goal related guidance will reduce
error rate. Second, the error rate in test case 10 is also
zero, where the position guidance was not provided. So the
conclusion is that error rate will be reduced when guidance
(position) is not present, although perceived difficulty and
time both increase, illustrating the tradeoffs between differ-
ent forms of decision complexity.

7.4 Summary and adviceto designers

The contrasts and complexity in the above results sug-
gest the hypothesis that decision complexity has multiple
influences on time, error rate, and user-perceived difficulty,
and suggests some rough approaches for reducing complex-
ity along these dimensions.

Depending on its goal, optimization for lower complexity
will have a different focus. The examples below illustrate
possible design approaches for reducing complexity.

Figure 4: Mapping

e In the IT configuration domain, an installation proce-
dure with easily-located clear info (e.g. wizard-based
prompts) for the next step will reduce both task time
and user-perceived complexity, though it is unclear
how much it will affect error rate.

e A procedure with feedback on the current state of the
system and the effect of the previous action (e.g. mes-
sage windows following a button press) will reduce
user-perceived complexity, but is unlikely to improve
task time or error rate.

e A procedure that automatically adapts to different
software and hardware versions to reduce compatibil-
ity constraints will reduce task time, and may also
cause a small reduction in perceived complexity.

e Omitting positional feedback (i.e., by not showing users
the effects of their actions) may, counterintuitively, in-
crease user accuracy, but at the cost of significantly
higher perceived complexity and task time.

8. NEXT STEPS

A natural next step following this study will be to ex-
tend and validate the model in the IT configuration do-
main through a controlled user study. Again we are fac-
ing the challenge of choosing a real scenario, which we can
tailor to test various factors of our model. We propose to
use a simulated installation process (Figure 4), where the
user has a specific installation goal to achieve and has to



Table 11: Pair-wise test for rating

1st Study 95% CT 2nd Study 95% CT
Guidance (pos) | without pos indicator > with pos indicator | (0.51, 1.05) | without pos indicator > with pos indicator | (0.51, 1.05)
Constraints static traffic > dynamic traffic (road close) | (0.54, 1.13)

‘ AvgTimePerStep ‘

Complexity

(Constraints,
Guidance,
Consequences, ...)

‘ Error Rate

‘ Rating (User perceived complexity) q Skill levels >

q Operation time \

Cost ()

q Probability (downtime) f

Figure 5: Steps

go through various decision steps based on provided infor-
mation (wizard, message windows, buttons...) and choose
the right path. For example, the installation process might
be to install the web portal software stack mentioned ear-
lier, with the requisite decisions concerning product versions
and deployment topology. This approach has the following
advantages:

e it is close to a real IT installation process and thus will
be familiar to most IT-trained people

e we will have full control over the process

e we can borrow the framework from our route-planning
study (on-line experiment engine, test case design etc)

In fact, as described earlier, there exists a mapping be-
tween the route-planning domain and the installation do-
main. For example, the traffic in driving can be seen as
analogous to compatibility between software or to machine
capacity limits. The global map is analogous to an instal-
lation/configuration manual or to a flowchart of the overall
process. Likewise, the driving time per road segment can be
mapped to the number of features achieved per installation
step.

Extrapolating from our earlier results, we can hypoth-
esize that the quality of guidance provided—in terms of
overall global configuration flow as well as step-by-step goal-
directed guidance—will dominate an I'T administrator’s per-
ception of decision complexity, whereas the degree of com-
patibility and software configuration sequencing constraints

will dominate the decision time in the installation/configuration

process. However, as next steps we need to validate this hy-
pothesis with concrete data from follow-on user studies in
the IT domain.

Making use of our current general framework as discussed
in section 6.3, we can expect that conducting these next user
studies would be straight-forwarded in terms of implemen-
tation.

After validating and refining the model in the actual IT
context, the next step to take it further is to start produc-
ing mappings from the model-based measures to higher-level
measures that speak directly to aspects of IT administration
cost. As figure 5 shows, the idea is to calibrate or map the
model measures to higher-level measures such as the time it
takes to perform a configuration procedure, the skill level re-
quired, and the probability of success at various skill levels.

This calibration will almost certainly require the integration
of decision complexity with the base complexity measures we
developed in previous work [3]. It will additionally require
either an extensive user study with trained IT administra-
tors of different skill levels performing real (but controlled)
IT tasks, or the collection of a corpus of field data from prac-
ticing system administrators performing configuration tasks
on production IT environments.

Once we have completed the above calibration to met-
rics such as time, skill, and error rate for specific configu-
ration procedures, we will then be able to recursively apply
our complexity analysis to the collections of IT configura-
tion and administration tasks performed in large IT shops.
Here, we will use documented I'T management processes to
guide the analysis; these may be the aforementioned ITIL
best practices [11] or other multi-role I'T processes formally-
documented in swimlane format, as described in [2]. Ulti-
mately, our hope is to be able to use such processes to guide
an evaluation framework, or benchmark, that can analyze
each key process activity for complexity and produce a pre-
diction of the cost incurred by the process (in terms of labor
cost and downtime cost). While this is a lofty goal that
will not be reached overnight, its realization would provide
a tremendous asset in helping to simplify current IT infras-
tructures and ensure that the new ones we build have the
least complexity possible.

9. CONCLUSIONS

This paper develops a model of decision complexity in
the context of understanding the complexity of configuring
computing systems. The model includes three factors: con-
straints, levels of guidance and consequences. Based on the
model, we conduct a carefully controlled user study in an
analogous route-planning domain. We discuss both qualita-
tive and quantitative results. We reveal the important fact
that decision complexity has significantly different impacts
on user-perceived difficulty than on objective measures like
time and error rate. And we identify the key factors affect-
ing decision complexity, which we use to extract some basic
guidance for reducing complexity. We also propose our next
step on validating the model in real IT contexts. And we
describe our future work on mapping measures through the
model to higher-level measures, which we believe will ul-
timately bring us to quantitative benchmarks towards less
complex, more easily managed IT infrastructures.
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