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Abstract 

Evan's 1968 ANALOGY system was the first 
computer model of analogy. This paper 
demonstrates that structure-mapping, when 
combined with high-level visual processing and 
qualitative representations, can do the same kinds 
of problems with hand-drawn sketched inputs. 
Importantly, the bulk of the computations are not 
particular to the model of this task but are general 
purpose: we sketch the problems using our 
existing sketch understanding system, sKEA, 
which computes visual structure that is used by our 
existing analogical matcher, SME. We show how 
SME can be used to facilitate high-level visual 
matching and how second-order analogies over 
differences computed via analogies between 
sketches provide a more elegant model of this task. 

 
1. Introduction 

One of the mysteries of human cognition is how we 
make sense of the world around us. We have powerful 
visual systems, and it appears that part of their job is to 
compute descriptions of visual structure (cf. [15,20]) 
which can be used for recognition and understanding. We 
have argued previously that qualitative spatial reasoning 
plays an important role in medium and high-level visual 
processing [8]. Qualitative spatial representations provide 
a bridge between vision and cognition, since they seem to 
be computed via visual processes, but take functional 
constraints into account. We have been exploring this idea 
by research on sketching. Understanding sketches is a 
useful approach to understanding qualitative visual 
structure because starting with digital ink lets us focus on 
processes of perceptual organization and ignore image 
processing issues. Previously we have described 
techniques for imposing human-like visual structure on 
sketches and how that structure enables our software to 
better model human similarity judgments [9]. Building on 
that work, we describe here a computational model of the 
classic Miller Geometric Analogies task. We use the same 
set of problems used by Evans in his pioneering work on 
the system ANALOGY [3]. Figure 1 provides an 
example. The form of the question is, “A is to B as C is to 
___?”. 

 

 
Figure 1: Sketched input of a GMAT problem 
 
Like Evans, we view these problems as non-trivial 

and useful for the exercising of internal descriptions. 
Evans was starting from scratch. Our goal is to show that 
the progress in analogical processing, qualitative spatial 
reasoning, and other areas of cognitive science allows us 
to use general-purpose simulation models to construct a 
model that solves this same task.  

We start by briefly reviewing the essentials of SME, 
our model of analogical matching, followed by a a 
summary of the sketching Knowledge Entry Associate 
(sKEA) [10], the open-domain sketch understanding 
system used in these experiments, focusing on 
representation of sketches and the visual structures 
computed over them. This includes the use of SME to 
help recognize visual rotations and reflections, a novel 
extension. We then describe how we use second-order 
analogies between differences found via analogies 
between sketches to solve these problems. We walk 
through an analysis of one example in detail to illustrate 
the processing and then summarize how our model 
performs on the Evans corpus. Finally, we discuss plans 
for future work. 
 
2. Overview of SME 

We rely on the Structure-Mapping Engine (SME) [4], 
an implementation of Gentner’s structure mapping theory 
[12] to provide human-like analogical processing. SME 
takes a pair of structured representations, the base and the 
target, and returns a set of directed mappings between 
them. Each mapping consists of entity correspondences 
between entities in the two representations, expression 
correspondences that form the multi-level structure of 
support for the entity matches and candidate inferences 
that project unmatched relationships and features from the 
base into the target [4]. The mappings are assigned a 
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numerical score that reflects the systematicity of the 
structure in support of the mapping.   
 
3. Overview of nuSketch and sKEA 

We view sketching as a form of multimodal 
interaction, where participants combine drawing,  
language, and their world knowledge to provide high-
bandwidth communication. Our nuSketch architecture [8] 
provides an approximation of such capabilities, by 
capturing digital ink for visual processing, and enabling 
people to identify sketched entities as instances of 
concepts drawn from a large background knowledge 
base1. Our ongoing work with sKEA is aimed at creating 
a sketch understanding system whose visual and 
conceptual understanding is deep enough to participate in 
sketching as fluently as people do.  

A sketch in sKEA consists of one or more glyphs. A 
glyph has its ink and content. The ink of a glyph is 
represented by a set of one or more poly-lines. The 
content of a glyph is the entity that it represents. By 
marking entities as instances of KB contents, axioms 
associated with those concepts are available for reasoning. 
sKEA incorporates computational geometry algorithms 
that provide an approximation of visual processing. Our 
concern currently is producing human-like visual 
representations, rather than modeling in detail the 
particular processes that construct them.  

Since the visual representations sKEA produces are 
crucial for this task, we summarize what visual structure 
sKEA produces. These computations are carried out 
incrementally, while someone is interactively sketching, 
using a process outlined in [9].  

sKEA starts by computing qualitative topological 
relationships, using Cohn's RCC8 relational vocabulary 
[1]. These distinctions include whether two glyphs are 
inside each other, touching each other, and so on. This 
information is used in turn to automatically compute two 
kinds of visual groups: contained glyph groups and 
connected glyph groups. A contained group consists of a 
single container glyph and the set of glyphs that are inside 
of it. The contained group does not include glyphs that are 
contained within other glyphs in the group. A connected 
glyph group consists of a set of glyphs that overlap ink 
strokes with one another. Articulation points can be 
computed over connected glyph groups, and tangentially 
connected pairs of glyphs can be noted as such. The 
algorithms used for computing glyph groups are detailed 
in [9]. 

                                                 
1 Our knowledge base contents are a 1.2 million fact subset of 
Cycorp's Cyc KB, containing just over 39,000 different 
concepts, over 8,500 relationships and 5,000 functions. This 
includes some augmentations to support qualitative and 
analogical reasoning. Northwestern's FIRE system is used for 
the KB implementation and reasoning. 

Positional relationships are expressed in a viewer-
oriented coordinate system of left/right and above/below. 
They are only computed between pairs of glyphs that are 
adjacent, as determined via a Voronoi diagram, or 
intersecting, as long as one glyph does not completely 
contain the other. Sketches can be further structured into 
layers, analogous to drawing on acetate overlays, and 
positional relationships are only computed between 
glyphs that are on the same layer.  

sKEA assigns each glyph a qualitative size value, one 
of tiny, small, medium, large or huge. Sizes are based on 
the area of a glyph’s axis-aligned bounding box, a coarse 
but empirically useful approximation. Glyph areas are 
normalized with respect to either the area of the bounding 
box around all glyphs on all layers, or the area of the 
user’s view port, whichever is larger. The normalized 
areas are then clustered into qualitative size values based 
on a logarithmic scale of the square root of the area. 
Informal experimentation suggests that this is a 
reasonable method for the varieties of sketches we have 
examined thus far.  

 
4. Visual shape matching 

sKEA previously did not analyze the internal structure 
of a glyph's ink, focusing only on relationships between 
glyphs. For the Evans task this is not enough, since it is 
important to recognize shape similarity and cases wherein 
one shape is a rotation or reflection of another (cf. Figure 
2).  

Figure 2: Recognizing rotated/reflected shapes is 
important 
 

We accomplish this by first decomposing every 
glyph's ink into a set of connected edges. We use a greedy 
algorithm that grows edges from segments of uniform 
orientation, looking for corners2. The edge sets are 
organized into cycles and segments. A cycle is an ordered 
sequence of connected edges in which the first and last 
edge are identical. A segment is a maximal ordered 
sequence of connected edges containing no cycles. Cycles 
and/or segments that represent the shape of the glyph as a 

                                                 
2 While sufficient for GMAT-style problems, this part of our 
algorithm is still more sensitive to the way that glyphs are drawn 
than we would like.  



whole – bounding edge sets – are gathered to be used in 
shape matching. 

The second step is determining if there is a good 
mapping between each pair of glyphs by matching their 
bounding edge sets. After augmenting them with 
qualitative angular relationships (convex and concave, 
illustrated by + and – in Figure 2, respectively), we use 
SME to compare them, producing a set of candidate 
mappings (up to five). These mappings, based on 
essentially qualitative criteria, are then evaluated via 
several quantitative criteria. Overall shape factors, e.g., 
convex/concave angles and acute/obtuse angles, receive 
the most weight, whereas factors such as relative edge 
length and whether an edge is axis-aligned receive less 
weight. Any mappings that receive sufficiently high 
scores are kept in consideration for possible rotations or 
reflections.  

Mappings are scrutinized to determine if they 
represent rotations or reflections. For rotations, the system 
examines the differences in each corresponding edge 
pair's orientations, and if the disparities are sufficiently 
similar over all pairs, it returns the average difference as 
the rotation. The mapping with the smallest angle of 
rotation is considered the most salient.  Reflections are 
handled similarly, by checking to see if the orientations of 
all corresponding edges are reflected over the same axis. 
If no consistent rotation or axis is found, the match is a 
failure. Otherwise, appropriate relationships are asserted 
between the two glyphs. 
 
5. Solving Miller Analogy Test problems 

Consider again the example of Figure 1. The correct 
answer is the one that best completes the analogy “A is to 
B as C is to ?”. sKEA provides a natural means of 
entering these geometry problems. We use the layer 
facility to create eight layers named A, B, C and 1 – 5 
which will contain the glyphs that make up each 
respective drawing. Object segmentation within each 
drawing is determined by the user who decides what 
comprises a glyph. In all these cases simple shapes, 
symbols and groups of connected lines are treated as 
individual glyphs. 

To solve the problems, we use a two-stage structure 
mapping process, depicted in Figure 3. The first stage is 
the computation of mappings from picture A to picture B 
and from picture C to each of the answer pictures 1 – 5. 
This generates six mappings (the example mapping AB 
and the potential answer mappings C1 – C5) that 
represent the similarities and differences between their 
respective pairs. The second stage takes those mappings 
as input and computes the prescribed analogy from AB to 
each of the answer mappings C1 – C5. The strongest 
result from the second stage indicates the correct answer. 
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 Figure 3: Two-stage structure mapping 

 
Let us examine this process in more detail. In addition 

to the visual structure usually computed by sKEA, the 
input to the first stage includes the shape identity, 
rotation, and reflection relationships computed as per 
Section 4. In some cases a non-symmetric shape can 
display both reflection and rotation possibilities. This is 
fine except in situations where both facts match from the 
example pair to an answer pair, thus carrying twice the 
weight the feature should. To avoid this, we allow 
assertion of both in the example pair, but allow only one 
of the two in the answer pairs. Following Evans’ lead, 
rotation is preferred over reflection. 

Because it is possible that more than one legitimate 
mapping might exist between a given pair of pictures, we 
run SME twice for each input pair in the first stage. The 
structural evaluation scores produced by SME are then 
used to judge the relative strength of the second, less 
optimal mapping to the first. In cases where the second 
mapping scores nearly as high as the first (within 5%) 
both mappings are considered valid. This results in twice 
as many second stage comparisons of which the best 
single answer is still taken. 

Normally SME only computes candidate inferences 
from the base to the target. For our purposes, it is just as 
important to detect novel relationships and attributes in 
the target that are not present in the base. We therefore 
used an extension to SME that computes candidate 
inferences in the reverse direction as well, using the same 
algorithm used to generate standard candidate inferences 
but with swapped arguments [17]. 

The first stage of comparison works through the 
similarities between pairs of pictures. Descriptions of 
differences arise out of comparisons [13]. Because the 
alignable differences computed as forward and reverse 
candidate inferences by the first stage are already 
grounded in the similarities, those differences provide all 
the necessary information for this task. In our experiments 
with the twenty problems from Evans’ work we have 
passed only the alignable differences to the second stage; 
our results have shown this to be sufficient. 

 



 
Figure 4: Sketch of Problem 18 

 
Symmetric shapes display reflection in many 

orientations, creating a large number of redundant facts. 
We disallow these by default to keep the system focused. 
However, there are times (cf. Figure 4) where no suitable 
answer can be found and it is necessary to use a non-
obvious reflection. When a first stage mapping returns a 
judgment of no difference at all, the system backtracks 
and reevaluates it with those reflections allowed. 

In the first stage mappings, attributes must match 
identically. Circles must match with circles and left must 
match with left or there is simply too much flex in the 
system for meaningful conclusions. But when comparing 
differences in the second stage, we relax this constraint, 
allowing for instance circles in one case to be consistently 
mapped to squares in another. Similarly, a rightOf 
relationship in one pair might correspond to an above 
relationship in another answer pair, a 90 degree rotation 
might be  analogous to a 45 degree rotation, or 
(esoterically) a change in position might correspond to a 
change in shape. Clearly some of these possibilities are 
better than others, so we use information from the 
knowledge base to compute preferences. Identical 
relations are still preferred, e.g., two 90 degree rotations 
match better than two rotations of different degrees. 
Attributes or relationships that are closer, in the 
conceptual hierarchy of the KB, are preferred as well. For 
instance, matching leftOf with rightOf is preferred to 
matching leftOf with above, since the former are both 
horizontal positional relationships. The system elaborates 
the results of each first-stage mapping by querying the 
KB concerning the attributes in the mapping and the 
relationships that hold between them. In cases where an 
unmapped glyph exists in either the base or target layer, 
SME generates a skolem representation in the candidate 
inferences. We augment this representation with the 
attributes of the glyph it maps to. These elaborated 
descriptions become the input for the second stage. We 
consider this a significantly more general and powerful 
approach than Evans’ alternate rules [3] wherein non-
matching predicates were substituted for alternatives of 
like type until an answer was found. 

Possible answers are evaluated by combining SME's 
structural evaluation score for the second-stage mappings 
with a difference score.  The structural evaluation score 

indicates only how similar the differences are. The 
difference score penalizes answers that have additional 
differences (aka leftovers). For example, in Figure 1, 
answer 4 could be seen as the removal of a glyph while 
answer 5 would be seen as the removal combined with a 
shape change. Clearly the example pair AB shows only 
the removal. In spite of this, these two answers receive the 
same structural evaluation score since they both reflect 
the removal. The shape change is a leftover and should be 
penalized. 

The difference score is a linear weighted sum, based 
on the types of leftovers, which is subtracted from the 
structural evaluation score. Leftovers involving 
unmatched glyph additions or removals are penalized the 
most strongly, since they are unlikely to be caused by any 
errors in the visual processing. Leftover relationship 
expressions, indicating a relationship appearing or 
disappearing in the answer but not in the example, are 
next highest penalized. The lowest penalty is given to 
attribute leftovers, which indicate a spurious difference in 
features such as shape, rotation, reflection, or size, since 
these might arise due to noisy perception. 

 
6. A detailed example 

To illustrate the system’s operation and the issues 
raised by it, we walk through the problem depicted in 
Figure 1. The correct answer is 4. The difference between 
A and B is the lack of the smaller, inner triangle. C 
likewise has a contained small square that is lacking in 4. 

Our first step is to draw the sketch in sKEA. Each 
shape is drawn as an individual glyph in the proper layer. 
sKEA’s spatial processing then computes size grouping 
for each glyph. The larger glyphs are all determined to be 
of medium size while the smaller are small. Contained 
glyph groups are asserted in A, C, 1 and 3; no connected 
glyph groups are found. There are no adjacent glyphs 
within any of the layers and thus no positional 
relationships are generated. 

The first stage structural mapping between A and B 
maps together the two larger triangles on the strength of 
their size and similarity of shape and generates a 
candidate inference proposing that the triangle in B 
should have another glyph inside of it. No reverse 
candidate inferences are formed. The first stage mappings 
from C to each of the five answers return notably similar 
results, showing differences in shape and removal of the 
inner and outer glyphs, as one would expect looking at the 
problem. 

The second stage mappings correctly identify 4 as the 
answer. Answer mappings from 1 and 3 generate 
candidate inferences and reverse candidate inferences 
indicating difference in the shape of the inner glyphs. 
These fail to map with anything in the example mapping 
resulting in null scores for both. The answer mapping for 
2 generates a candidate inference indicating the lack of 
the outer glyph. This fails to map with the lack of an inner 
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glyph, again resulting in a null score. Answer mappings 
for 4 and 5 receive identical structural evaluation scores 
for reflecting the removal of the inner glyph. However, 5 
is penalized for having a leftover, the difference in the 
shape of the outer glyph, and 4 is selected as the answer. 

 
7. Experimental results 

Due to space concerns we cannot include the 
sketches and analysis of the twenty problems. In eighteen 
of the problems, our system selects the same answer that 
ANALOGY did. Our system also solves Evans’ problem 
10 which ANALOGY did not. For problem 12, discussed 
below, our system selects a different answer than 
ANALOGY, but we believe our answer is just as 
consistent and consider it correct as well. 
 

 
Figure 5: Sketch of Problem 12 

 

 
Figure 6: Sketch of Problem 19 

 
In discussing Problem 12, Evans reports 3 as the 

correct answer, a case of vertical axis reflection. In 
Problem 19, he reports 2 as the correct answer, noting that 
his system is biased to prefer rotation to reflection 
(answer 1 shows horizontal axis reflection). Taken 
together, these do not seem to be consistent. Our system is 
currently biased to prefer rotation, as Evans reported his 
to be, and thus selects answer 1 for Problem 12 and 
answer 2 for Problem 19. If the bias were switched to 
prefer reflection, answers 3 and 1 would be selected, 
respectively. But based on the information Evans provides 
in [3], we conclude that our answers are satisfactory. 

 
8. Other related work 

Evans’ classic work was the first to illustrate that 
machines could do analogy. To fit his program into the 
punch-card computer available at the time, the geometric 

processing was done as a separate module, taking 
coordinates as input and producing symbolic descriptions. 
Due to limitations in this part of the program, half of the 
examples reported in [3] actually use hand-coded inputs 
instead. Subsequent attempts to build on Evans’ work use 
hand-generated symbolic inputs as starting points (e.g., 
[19]). By contrast, our model exploits sKEA’s built-in 
qualitative visual structure computing abilities to generate 
representations from ink input, capabilities which are part 
of a general-purpose architecture for sketch 
understanding. sKEA’s visual processing evolved from 
Ferguson’s work on GeoRep [5], which was first to show 
that structure mapping could be used to identify geometric 
similarity. Another significant difference is that Evans 
construed the problem as creating transformation rules 
between pairs of figures, which led to ambiguities due to 
the need to consider alternate possible rules in some 
cases. Our model illustrates that computing explicit rules 
is unnecessary: comparing the similarities and differences 
is sufficient to explain human behavior on the task. 

Tight interleaving of the construction of 
representations with matching is a hallmark of systems 
from Hofstader’s group, including Mitchell’s Copycat 
program [15] and French’s TableTop [11]. Unfortunately, 
each of these systems only operates in the single domain 
it was designed for, letter-strings for Copycat and table 
settings for TableTop. The kinds of comparisons that can 
be made are hand-wired into the system (the Slipnet). 
Similarly, Galatea [2] has a built-in specialized language 
of spatial entities and transformations that must be used in 
posing problems to it. By contrast, SME has been used in 
a wide variety of domains, and automatically figures out 
what kinds of things can be matched [7].  

 
9. Discussion and future work 

By solving this set of classic visual analogy problems 
without sacrificing the generality of our system, we 
believe that we have made several significant 
contributions. We have shown that qualitative 
representations are a significant element of doing 
geometric analogies of a kind that has commonly been 
used in intelligence testing. We have also shown that the 
set of representations we are working with are a 
reasonable subset of the representations needed for 
solving said problems. We have shown that structure 
mapping can be effectively used to identify geometric 
rotation and reflection in addition to similarity. Finally, 
we have shown that a two-level analogical processing 
scheme can capture the phenomena without searching 
over transformation rules as Evans did. 

Future work will include continued research on visual 
structure as well as conceptual relationships. We plan to 
extend our visual processing to more sophisticated 
positional relations and incorporate Ferguson’s MAGI 
model of symmetry [5]. We also plan to improve the 
noise tolerance of our visual processing. Ongoing work in 
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this area has proposed a mixture of interactive and 
automated techniques (cf. [14,21]). In this work we have 
used a very basic system of backtracking and 
reinterpretation which we intend to flesh out into a full-
fledged model. Finally, we plan to apply our system to 
more tasks, including a more advanced geometric 
intelligence test. 
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