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Abstract 

Creating intelligent sketch-based educational software 
requires representing sketches the way a person would. 
Here, we evaluate several qualitative models of shape 
representation to determine which one best matches human 
judgments. The models differ in a) the way they segment an 
object’s contour into meaningful edges; and b) their level of 
detail for describing a shape. Our analysis indicates our 
improved edge-segmentation algorithm produces better 
results than an older algorithm, and a representation 
focusing on the edges in each shape best matches human 
judgments. 

 Introduction 

Qualitative features play a key role in human perception 

and comparison. For example, it is easier to see that two 

objects are different when there is a qualitative change 

between them (e.g., the angle between the object’s parts 

changes from perpendicular to oblique) than when there 

is a purely quantitative change (between two oblique 

angles) (Rosielle & Cooper, 2001). Similarly, it is easier to 

determine that an object is asymmetric when there is a 

qualitative change in its vertices (from convex to concave) 

(Ferguson, Aminoff, & Gentner, 1996). Some researchers 

(Biederman, 1987; Hummel & Biederman, 1992) have 

argued that object recognition particularly relies on 

qualitative representations. Because qualitative features 

such as relative orientation and relative size remain 

constant across most transformations, objects may be 

recognized even when seen from novel viewpoints (but see 

Tarr et al., 1997). 

 Many domains, especially in science, technical, 

engineering, and mathematical (STEM) fields, are highly 

spatial.  Sketching is a natural modality that people use to 

communicate about spatial topics. Creating intelligent 

sketch-based educational software that can interact via 

sketching could potentially revolutionize education.  Doing 

that, in turn, requires using human-like qualitative shape 

representations. For example, Figure 1 depicts a cross-

sectioning problem from the Santa Barbara Solids Test 

(Cohen & Hegarty, 2007), which has been used to examine 

students’ ability to visualize cross-sections of objects.  We 

are using problems from this test to help students improve 

their cross-sectioning ability.  Each problem is recast as a 

sketch worksheet (Yin et al., 2010).  In a sketch worksheet, 

students are given a problem for which they sketch a 

solution.  At any time they can ask for feedback from a 

coach built into the software.  The coach operates by 

comparing the student’s work against a correct sketch 

drawn by the instructor or a domain expert, and generating 

advice based on the differences.  Here, the students are to 

sketch the two-dimensional cross-section of the objects 

intersected by the plane. Figure 1B shows the correct 

solution, and Figure 1C shows a student sketch. To identify 

the important differences, it is crucial for the software to 

represent both sketches in human-like ways.  

 Our research approach is to develop computational 

models of human reasoning and intelligent sketch-based 

educational software in parallel (Forbus et al., 2011). The 

A)  

B)     C)  
Figure 1. A cross-sectioning problem. A: The assignment. B: The 

instructor solution. C: An example student sketch. 



models are designed based on psychological evidence 

about representation and comparison in humans. They are 

evaluated by conducting simulations of visual problem-

solving tasks and comparing their performance against that 

of humans (Lovett et al., 2009; Lovett & Forbus, 2011a). 

Once they are sufficiently vetted, they are incorporated 

into educational software. 

 We are currently integrating a model of qualitative shape 

representation into sketch worksheets, in order to support 

problems like the one described above. This project 

presents two significant research challenges. Firstly, the 

modeling work used perfect, noise-free line drawings from 

psychological experiments and tests. In contrast, sketch-

based educational software must handle rough student-

drawn sketches. To address this challenge, we have 

developed a more robust edge-segmentation algorithm than 

was used in the modeling work. This algorithm attempts to 

segment a shape’s contour into meaningful edges (e.g., the 

four edges in a rectangle) by identifying discontinuities in 

the contour’s curvature. It must distinguish between 

discontinuities from intentional corners and those resulting 

from random noise. Until now, we have lacked evidence 

on how this new algorithm compares to the original. 

 Secondly, the models are designed to flexibly move 

between several possible shape representations, depending 

on the task demands (Lovett & Forbus, 2011b). For 

example a rectangle could be represented as four straight 

edges. Alternatively, it could be represented as a closed 

shape with two axes of symmetry. It is unclear which 

shape representation is most useful for providing feedback 

on the cross-sectioning task. 

 Here, we address these questions by evaluating the 

model on actual student sketches of cross sections. We 

generated 307 shape pairs based on a previous cross-

sectioning experiment. We had human raters judge each 

pair as “same shape” or “different shape.” In our analysis, 

we compare the human ratings to the model’s similarity 

judgments. We test the old and new edge-segmentation 

algorithms and consider several possible shape 

representation schemes. Overall, this evaluation suggests a) 

our new edge-segmentation algorithm improves shape 

comparison considerably; and b) a representation focusing 

on the edges within each object provides the most accurate 

measures of shape similarity. 

 In the following section, we present our model of shape 

representation. We contrast the old and new edge-

segmentation algorithms, and we summarize the set of 

possible shape representation schemes. We then describe 

our experiment, in which we compared each possible shape 

representation to the human judgments. Afterwards, we 

discuss related systems and consider future work. 

Model 

Our model is built within the CogSketch sketch 

understanding system (Forbus et al., 2011). CogSketch is a 

general platform for developing cognitive models and 

intelligent sketch-based educational software. (In addition 

to sketch worksheets, a software coach for helping 

engineering design students learn to communicate by 

sketching is also being developed (Wetzel & Forbus, 

2010).) Cogsketch generates qualitative representations 

from a user-drawn sketch. Rather than fully performing 

vision, CogSketch requires the user to provide additional 

information about their sketch. Firstly, the user manually 

segments the sketch into separate objects—this can be 

done by pressing a button when the user finishes drawing a 

new object, or by manually re-segmenting the ink. 

Secondly, the user can indicate what each object represents 

via conceptual labeling, selecting a concept from the 

OpenCyc1 knowledge base to describe the object. 

 Given a set of sketched objects with (optional) 

conceptual information, CogSketch automatically 

computes spatial information about a sketch. This includes 

qualitative spatial relations between the object (describing 

relative position and topology), as well as attributes for 

each individual object. The spatial and conceptual features 

combine to produce a structural description of the sketch. 

This description can serve as input to cognitive simulations 

or educational software. 

 In particular, sketch descriptions can be compared using 

the Structure-Mapping Engine (SME) (Falkenhainer, 

Forbus, & Gentner, 1989). SME is a computational model 

of comparison based upon Gentner’s (1983) structure-

mapping theory, which proposes that people compare 

representations by aligning their common relational 

structure. Given two structural descriptions in predicate 

calculus, SME computes one to three mappings between 

them. Each mapping contains: 1) correspondences between 

the entities, attributes, and relations in the two descriptions; 

2) candidate inferences, inferences drawn about one 

description based on elements in the other that failed to 

align; and 3) a similarity score, based on the breadth and 

depth of aligned structure.  

 Because SME is based on a psychological theory, its 

similarity scores represent predictions about human 

similarity judgments. Provided the items being compared 

(e.g., object shapes) are represented in a way that captures 

the features salient to humans, the similarity scores should 

indicate how similar people find those items to be. 

 Below, we describe our extension to CogSketch, which 

attempts to generate human-like representations of space 

and shape. This extension depends critically on the 

system’s ability to segment an object’s contour into 

                                                 
1 http://www.opencyc.org/ 

http://www.opencyc.org/


meaningful edges. Therefore, we also discuss our original 

and improved edge-segmentation algorithms. 

Representing Space and Shape 

Our cognitive model builds on CogSketch’s default 

representations. Given a set of objects, it generates a 

hierarchical representation, describing the objects at three 

levels: groups, individual objects, and edges within each 

object. At a given level, there are qualitative attributes for 

each element and qualitative spatial relations between 

elements. For example, at the edge level, the attributes 

indicate whether an edge is curved or straight, and whether 

it is long or short (relative to the other edges), while the 

relations describe connectedness, relative orientation and 

whether a corner between edges is concave or convex. At 

the object level, the attributes indicate whether a shape is 

open or closed, whether its edges share common attributes 

(e.g., straightness), and its symmetry type—an isosceles 

triangle has one axis of symmetry, while a rectangle has 

two perpendicular axes. See Lovett and Forbus (2011b) for 

the full set of qualitative terms. 

 Importantly, the hierarchy provides two ways of 

representing an object’s shape: at the edge level, as a set of 

relations between edges; or at the object level, as a set of 

attributes for a single object. The edge level provides more 

detail because it refers to each edge in the shape. However, 

the sparser object-level representation may provide 

sufficient detail for shape comparison, and because it is not 

concerned with every edge, it is less likely to be distorted 

by noise in the student drawings (McLure et al., 2011). 

 At each level in the hierarchy, the model can generate an 

orientation-specific or an orientation-invariant 

representation. The orientation-specific representation 

(e.g., Tarr et al., 1997) is tied to the particular orientation 

of the object. For example, an edge-level rectangle 

representation might indicate that the longer edges are 

vertical while the shorter edges are horizontal. 

Alternatively, the sparser orientation-invariant 

representation (e.g., Biederman, 1987) excludes such 

information. Thus, it would allow two rectangles drawn at 

different orientations to match, without there being 

noticeable differences. 

 In the case of the cross-section worksheets, it seems 

likely that orientation-specific representations would be 

more useful. If an object is drawn at the wrong orientation, 

this generally indicates a mistake by the user. However, 

again, there may be an advantage to using a sparser 

representation. In the analysis below, we evaluate both 

types. For simplicity, we use the term oriented for 

orientation-specific representations. 

Edge-Segmentation Algorithms 

CogSketch represents an object as several lists of points, 

one for each stroke drawn by the user. However, there is 

no guarantee that these strokes will correspond to an 

object’s edges. A user might draw all four edges of a 

rectangle with a single stroke, or they might carefully draw 

multiple strokes for each edge. An edge-segmentation 

algorithm is used to identify the object’s meaningful edges. 

 For simple closed shapes, such as those often drawn by 

students on cross-section worksheets, the user-drawn 

strokes can be easily grouped together to form a single 

contour, a list of points tracing along the shape’s exterior. 

Thus, in this paper, we focus on the next step: segmenting 

a contour into meaningful edges. Below, we first describe 

our original edge-segmentation algorithm, built for 

modeling experiments. We then present our improved 

algorithm, optimized for handling hand-drawn student 

sketches. 

Original Segmentation Algorithm 

The original algorithm seeks out corners by computing the 

curvature and the derivative of the curvature at each point 

along the contour, using a convolution with a Gaussian 

kernel and its derivative (Lowe, 1989). A corner is a point 

where the contour’s orientation changes sharply. Thus, the 

curvature should be high. However, there is also a 

discontinuity in the rate of change in curvature at a corner. 

Thus, the curvature derivative should be high in the 

vicinity. 

 If there is a local maximum in curvature with an 

accompanying high derivative, a candidate corner is 

created. However, this local evidence for a corner is 

insufficient. It is possible for minor noise to create a local 

discontinuity in what is otherwise a straight line. Therefore 

the system gathers global evidence by segmenting the 

contour at the candidate corner, creating two candidate 

edges. These edges can then be compared to determine 

whether a corner between them is meaningful. For 

example, if the edges are straight, a corner is meaningful 

unless the edges have nearly identical orientations. If the 

edges are curved, and they curve in the same direction, 

then the corner almost certainly is not meaningful. More 

likely it is local noise, as smooth curves are harder to 

create than straight lines. If the global evidence supports 

the local evidence, the contour is segmented at the corner. 

Improved Segmentation Algorithm 

The improved algorithm utilizes the same basic principles 

as the algorithm above. However, whereas the original 

algorithm was home-brewed, based on the needs of the 

modeling experiments, this algorithm systematically 

applies established edge-segmentation techniques. 

 We use a modification of the Curvature Scale Space 

(CSS) corner detector (Mokhtarian & Suomela, 1998). 

Like the original approach, the detector computes the 



curvature at each point along the contour. The contour is 

segmented into corners at local maxima in the curvature. 

 We perform post-processing to filter out corners based 

only on local noise. For every sequence of three corners 

along the contour, the system evaluates whether the middle 

corner could be removed. It does this by measuring the 

segment’s closeness of fit to a geometric primitive, either a 

straight line or an arc. If the segment closely fits one of 

these primitives, then the corner in the middle of the 

segment is not meaningful, and it can be removed. 

Closeness of fit is measured using Hausdorff distance 

(Huttenlocher, Klanderman, & Rucklidge, 1993) with a 

match probability (Field et al., 2011). In Figure 2, post-

processing removes most of the false corners in the circle. 

Unfortunately, it fails to remove one false corner. 

 The improved algorithm contains one additional 

refinement, which only applies to object-level 

representations. A perfect circle should consist of only a 

single edge which closes on itself; however, a poorly 

drawn circle may be segmented into multiple edges, based 

on local noise. To address this problem, the system applies 

a circle detector to an object’s contour before computing 

the object-level representation. As above, this detector 

measures the Hausdorff distance between the contour and a 

perfect circle. If the distance is small enough, the object is 

treated as a circle for representation purposes (e.g., it 

receives the attributes 2D-Shape-Ellipse and Fully-

Symmetric-Shape; see Lovett & Forbus, 2011b). 

Experiment 

We evaluated our shape representations on a corpus of 

shape pairs taken from a cross-sectioning experiment. In 

that experiment, participants were shown images such as 

Figure 1A and asked to draw the two-dimensional cross-

sections. For example, one participant drew Figure 1C. We 

generated our corpus by pairing each student-drawn object 

with the corresponding object in the solution sketch (e.g., 

Figure 1B). This produced 307 shape pairs. 

 Three human participants rated the similarity of the 

shape pairs. The raters were given an explanation of the 

cross-sectioning task and told to act as graders, indicating 

whether each student-drawn object was the same shape as 

the solution-sketch object. For each pair, they clicked on a 

button to indicate “Same,” “Different,” or “Not Sure.” 

 We also computed the similarity of the shape pairs using 

our shape representation models. We varied segmentation 

algorithm (old/new) x representation level (edges/objects) x 

orientation information (invariant/specific) = eight models. 

For each model, we used the Structure-Mapping Engine to 

compute a similarity score. Similarity scores were 

normalized, so they ranged from 0 to 1. 

 Behavior Results 

One human rater’s scores were thrown out because they 

failed to follow instructions. The other two raters agreed on 

92.5% of the shape pairs. Their inter-rater reliability score 

Kappa was 0.81.  In the analysis below, we exclude the 

7.5% on which the raters disagreed. Among the 284 

remaining pairs, all responses were either “Same” or 

“Different.” 

Modeling Results 

Segmentation 

We first evaluated each edge-segmentation algorithm using 

a simple heuristic: number of edges. If two objects have 

the same shape, the algorithm should identify the same 

number of meaningful edges for them (four for a rectangle, 

one for a circle, etc). Note that this heuristic does not fully 

determine shape similarity: two objects with the same 

number of edges may have very different shapes. 

 Table 1 gives the percentage of shape pairs with 

matching numbers of edges, according to each 

segmentation algorithm. Let us first consider the “Same” 

shape pairs (i.e., the pairs deemed the “Same” by human 

raters). Clearly, the improved algorithm outperforms the 

original algorithm. It computes matching numbers of edges 

82% of the time, compared to the original’s 69%. 

 The results for “Different” shape pairs are harder to 

interpret. If two objects have different shapes, they may or 

may not have the same number of edges, so it is unclear 

which algorithm is more accurate. However, it is 

interesting to note that the original algorithm appears far 

more permissive for “Different” pairs: it is considerably 

 “Same” “Different” 

Original .69 .58 

Improved .82 .38 
Table 1. Percentage of edge-number matches for the original and 

improved edge-segmentation algorithms. 

 
Figure 2. Improved edge-segmentation, with and without post-

processing. 



more likely to compute the same number of edges. We 

must consider other results to determine if this disrupts the 

system’s performance. 

Similarity 

We next consider our eight different shape representations. 

For each of these, we computed the average SME 

similarity score for “Same” and “Different” shape pairs. To 

match human judgments, a model should produce high 

scores for “Same” pairs and low scores for “Different” 

pairs. 

 Table 2 gives the results for each representation. 

Overall, the edge-level, oriented representation with 

improved edge-segmentation performed best: its “Same” 

pair scores were .45 higher than its “Different” pair scores. 

 There are several general observations we can make. 

Firstly, the object-level representations appear to be 

ineffective. The “Different” similarity scores are quite 

high, suggesting these representations provide insufficient 

detail for distinguishing between different shapes. 

 Secondly, the original segmentation algorithm is also 

ineffective. Again, the “Different” similarity scores are 

high, even for edge-level representations. The Table 1 

results may help explain this finding. This algorithm 

appears to be too permissive in finding the same number of 

edges for “Different” shape pairs. 

 Thirdly, there is no apparent advantage for oriented 

representations. This suggests that students in the cross-

sectioning study rarely drew objects at an incorrect 

orientation. When objects were different, it was because of 

their overall shape, not because of their orientation. Thus, 

the additional information in the oriented representations 

would provide little assistance in distinguishing between 

shapes. 

Classification 

Finally, we evaluated whether the models could classify 

pairs as Same or Different. This was done by applying a 

threshold to the similarity scores; pairs above the threshold 

would be classified as Same, while those below would be 

Different. We experimented with a range of thresholds and 

found that .90 produced the best results2. Table 3 shows 

each representation’s performance with this threshold.  

 Again, the edge-level, oriented representation with 

improved edge-segmentation performed best. It classified 

71% of the human-rated “Same” pairs as Same, but only 

9% of the “Different” pairs as Same. While the false 

positive rate (9%) was quite low, the false negative rate 

was higher: 29% of the “Same” pairs were misclassified as 

Different. We discuss this further in the next section. 

 The first two observations about similarity scores also 

apply to classification. Again, the object-level 

representations often cannot distinguish between 

“Different” pairs, leading to high false positive rates. The 

original segmentation algorithm also produces many false 

positives. However, the oriented representations do have a 

small advantage here, at least for edge-level 

representations: for both the original and improved 

segmentation algorithms, there are fewer false positives. 

This suggests our classification measure may be more 

sensitive than our similarity measure. 

Discussion 

Our results show that the improved edge-segmentation 

algorithm consistently outperforms the original. For pairs 

judged the “Same” by human raters, it produces: a) more 

matching numbers of edges; b) higher similarity scores; 

and c) more similarity scores above a .90 threshold. For 

pairs judged “Different,” it produces: a) fewer matching 

numbers of edges; b) lower similarity scores; and c) fewer 

similarity scores above a .90 threshold. Interestingly, the 

                                                 
2 The edge-level representation with improved edge-segmentation out-
performed other representations at every threshold considered (0.65 - .95), 
although there was not always an advantage for oriented. 

Original Segmentation 

 “Same” “Different” 

Edge .79 .54 

Edge, Oriented .81 .55 

Shape .79 .68 

Shape, Oriented .79 .68 

  
Improved Segmentation 

 “Same” “Different” 

Edge .84 .40 

Edge, Oriented .85 .40 

Shape .92 .75 

Shape, Oriented .91 .74 
Table 2. Average similarity scores for each shape representation.  

High values are preferred in the “Same” column while low values 

are preferred in the “Different” column. 

 

Original Segmentation 

 “Same” “Different” 

Edge .60 .33 

Edge, Oriented .61 .25 

Object .46 .29 

Object, Oriented .46 .29 

  
Improved Segmentation 

 “Same” “Different” 

Edge .74 .14 

Edge, Oriented .71 .09 

Object .66 .43 

Object, Oriented .66 .42 

Table 3. Proportion of  Same classifications for each shape 

representation.  High values are preferred in the “Same” column 

while low values are preferred in the “Different” column. 

 



second set of effects are more pronounced. That is, the new 

algorithm is particularly good at distinguishing between 

“Different” shapes.  

 An inspection of the results suggests this may be 

because the original algorithm is too permissive in 

grouping curves together. This is due to the global 

evidence phase, where a candidate corner will be 

eliminated if the curved edges on either side of it are 

remotely consistent. This can result in a single, elliptical 

edge where there should actually be multiple edges. In 

contrast, the new approach’s Hausdorff distance 

computation may produce more accurate information on 

when curves should be grouped together. 

 The results also show that our object-level 

representations provide insufficient detail for 

distinguishing between “Different” shapes. Focusing on 

the improved edge-segmentations, the object-level 

representations provide higher similarity scores and more 

false positives on the “Different” pairs. This suggests that 

for the cross-sectioning task, edge-level information is 

necessary to distinguish between shapes. Note that this 

does not mean every sketch worksheet should use edge-

level representations. The object level may provide 

sufficient detail for other tasks. 

 The edge-level, oriented representations with improved 

edge-segmentation provide the best overall results. 

However, there is room for improvement. In the 

classification evaluation, only 71% of “Same” shape pairs 

were classified as Same. This is because the current 

algorithm, even with post-processing, is still sensitive to 

noise. For example, the left ellipse in Figure 3 has a hook 

at its lower left point, inducing the system to introduce a 

false corner. Thus, the system classifies these shapes as 

Different, whereas the humans rated them as “Same.” 

Related Work 

Museros and Escrig’s (2004) system used qualitative 

descriptions to identify rotations between polygons. 

Ferguson & Forbus’ (1999) GeoRep constructed 

qualitative descriptions of line drawings that could be used 

as input for tasks such as recognition and identifying 

symmetry. Neither of these systems worked on hand-drawn 

input. Veselova and Davis’s (2004) system learned 

qualitative constraints describing a hand-drawn object 

which could be used to recognize other sketches of that 

object. Their system was designed specifically for sketch 

recognition, whereas we use a task-general approach for 

representing shape and space. 

Conclusions 

Building intelligent sketch-based educational software is a 

difficult challenge. It requires software that can predict 

human similarity judgments for image and shape 

comparisons. Here we have shown that edge-level shape 

representations, developed for cognitive simulations, can 

approximate human judgments. When humans judge two 

shapes as “Different,” the model agrees 91% of the time. 

However, when they judge two shapes as “Same,” the 

model only agrees 71% of the time. 

 A major reason for the false negative rate is the 

difficulty of accurate edge-segmentation. While our 

improved algorithm, based on established segmentation 

techniques, outperforms the original, it fails to achieve 

human levels of noise-tolerance.  

 We believe we can increase the algorithm’s noise-

tolerance through greater reliance on geometric primitives. 

Recall that these primitives provide global information, 

used to filter out local noise. At present, the algorithm uses 

two primitives (lines and arcs) at the edge level, and one 

(circles) at the object level. We would like to apply all 

primitives at the edge level, so that circular edges can be 

recognized. We would also like to add a fourth primitive, 

ellipses, to better process elliptical shapes like those in 

Figure 3. 

 Much of human noise-tolerance may come from our 

ability to use global context in interpreting shapes. For 

example, when comparing ambiguous shapes, people 

changed their interpretations to make the shapes more 

similar (Medin, Goldstone, & Gentner, 1993). We would 

like to implement a similar capability. We term this 

comparison-based re-segmentation: during comparison, 

the system would add or remove corners in one shape to 

make it better match the other. For example, the shapes in 

Figure 4 may have different numbers of edges when 

viewed in isolation. However, during comparison, the 

system would recognize that a corner could be added to the 

left shape or removed from the right shape. Each potential 

corner would have a confidence level, based on the 

curvature, and thus each re-segmentation would have an 

associated cost. This re-segmentation cost could provide a 

more precise quantitative measure of shape similarity.  

Original 

 
Segmented 

 
Figure 3. Error segmenting an ellipse with improved edge-

segmentation. 
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Figure 4. These shapes may require comparison-based re-
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