
Abstract 

We present a qualitative, hierarchical approach for 
representing 2D space. Inspired by research on 
human vision, our approach supports computation-
al models of visual problem-solving.  A key idea is 
that hierarchical representations of space are con-
structed bottom-up; i.e., low-level representations 
support the construction of high-level representa-
tions.  However, during problem-solving, represen-
tations are attended to top-down; the highest-level, 
most abstract representation contains the least de-
tail, and thus is an ideal starting point for under-
standing the problem. We show how our represen-
tation scheme has been implemented in several 
successful models of visual problem-solving. 

1 Introduction 

Spatial representation is one of the key challenges in visual 
problem-solving.  Representations must be sufficiently rich 
to capture the important features in a visual scene, but not so 
complex that they wash out those features with irrelevant 
details.  Representations much also be flexible because the 
important details may vary greatly from one problem to 
another. For example, consider the oddity task (Figure 1), in 
which individuals see an array of images and choose the one 
that is different from the others.   In Figure 1A, an individu-
al must attend to the spatial relationships between the shapes 
to solve the problem.  The features of the shapes them-
selves, particularly the edges in the larger shapes, are an 
irrelevant distractor.  In contrast, in Figure 1B the edges are 
the key feature. Only by considering the number of edges or 
corners in each shape can one determine a solution to the 
problem. 

Our research focuses on building computational models 
of visual problem-solving in humans.  Such models allow 
our theories to be informed by both psychological research 
and the actual constraints imposed by the tasks. Previously 
[Lovett et al., 2008; Lovett et al., 2010], we have made two 
claims about people’s spatial representations:  

1) When possible, people use qualitative, structural repre-
sentations of space [Biederman, 1987; Forbus et al., 1991]. 
Such representations allow us to abstract out irrelevant 
quantitative details, such as the exact dimensions or orienta-

tions of objects in a visual scene and focus on important 
features, such as relative location, relative orientation, and 
topology (e.g., containment).   

2) These representations are hierarchical [Palmer, 1977], 
meaning that any visual scene can be represented at multiple 
levels of abstraction. In our work, we distinguish between 
the edge level, the shape level, and the group level.  The 
edge level describes the individual edges within a shape, 
and the relations between them.  The shape level describes 
the shapes in a visual scene, and the relations between them.  
The group level describes relations between entire groups of 
objects.  Representing an image at multiple levels simulta-
neously would be confusing, so we assume people represent 
an image at only one level at a time.  Thus, one challenge in 
visual problem-solving is determining the appropriate level 
of abstraction to use when solving a problem.  Here, we 
present two important refinements to the above claims:  

1) Hierarchical representations of space are computed 
bottom-up but attended to top-down [Hochstein and Ahis-
sar, 2002]. That is, in order to compute a spatial representa-
tion at any level (e.g., the shape level), one must first com-
pute a representation at the previous lower level (the edge 
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Figure 1. Oddity task problems from [Deheane et al., 2006]. 
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level); however, the highest-level representation is generally 
the best starting place for solving a problem.  It is the most 
abstract, and thus the sparsest representation, making it the 
easiest to reason over.  This claim is further supported by 
psychological research [Hochstein and Ahissar, 2002; Love 
et al., 1999]; the human visual system appears to generate 
representations at a high level of abstraction, requiring ex-
plicit attention to focus in on the details of a visual scene.   

2) Comparison plays a key role in both the bottom-up 
computation and the top-down examination of spatial repre-
sentations.  We model comparison as a structure-mapping 
process [Gentner, 1983] in which the relational structure in 
two representations is aligned in order to identify corres-
ponding elements, compute differences, and determine the 
similarity of the things being compared. 

In this paper, we describe how the above claims are im-
plemented in our computational model.  We begin by intro-
ducing two pre-existing components that play a role in our 
model: CogSketch [Forbus et al., 2011] for spatial encod-
ing, and the Structure-Mapping Engine [Falkenhainer et al., 
1989] for comparison.  We then explain how our model 
computes hierarchical representations of space, using infor-
mation at lower levels to generate representations at higher 
levels. We summarize the set of spatial terms in our model’s 
qualitative vocabulary for each level. Next we consider the 
role comparison plays in these representations.  Finally, we 
show how the model comes together to support visual prob-
lem-solving. 

2 Model Components 

Our model depends on two existing components: CogSketch 
for spatial encoding, and the Structure-Mapping Engine for 
comparison. 

2.1 CogSketch  

CogSketch [Forbus et al., 2011] is an open-domain sketch 
understanding system. Given a sketch containing a set of 
objects, called glyphs, CogSketch automatically computes 
qualitative spatial relations between the glyphs, describing 
features such as relative location and topology. CogSketch 
does not automatically segment the sketch into glyphs; the 
user provides this information.  Users create sketches either 
by drawing the glyphs—indicating where one glyph ends 
and the next begins—or by importing shapes from Power-
Point.  The second approach allows users to create sketches 
based on stimuli from psychology experiments, since such 
stimuli often are created or can be recreated in PowerPoint. 

2.2 Structure-Mapping Engine 

The Structure-Mapping Engine (SME) [Falkenhainer et al., 
1989] is a computational model of comparison based on 
Gentner’s [1983] structure-mapping theory of analogy.  Al-
though structure-mapping was initially proposed to explain 
how people compute abstract analogies, there has been in-
creasing evidence [Markman and Gentner, 1996; Lovett et 
al., 2009a] that structure-mapping can also explain people’s 
concrete visual comparisons.  Our approach uses SME in 

visual problem-solving to compare both concrete and ab-
stract representations. 

SME operates on structured, symbolic representations de-
scribing entities, attributes of entities, and relations between 
entities, as well as higher-order relations between other rela-
tions.  Given two such cases, a base and a target, it com-
putes one or more mappings between them by aligning their 
common relational structure. SME prefers to align deeper 
and broader structure.  Because higher-order relations have 
more depth, they receive more weight, and thus they play a 
key role in the SME mappings. Each mapping consists of: 
1) correspondences between elements in the base and target; 
2) a similarity score based on the breadth and depth of 
aligned structure; and 3) a set of candidate inferences, 
guesses about the target based on expressions in the base 
that failed to align.   

SME is useful in visual problem-solving because it can 
provide several pieces of information: the corresponding 
objects in two images (based on the correspondences), the 
facts common to two representations, the differences be-
tween two representations (based on the candidate infe-
rences), and the overall similarity of two representations. 

3 Hierarchical Representation 

There are two necessary steps for computing a representa-
tion at any level in the spatial hierarchy: 1) perceptual or-
ganization [Palmer and Rock, 1994], in which a visual scene 
is divided into a set of entities; and 2) perceptual encoding, 
in which those entities are examined and assigned attributes 
and spatial relations.  Our model depends on CogSketch to 
provide the initial entities for perceptual organization.  
CogSketch’s glyphs become the entities at the shape level in 
the hierarchy. Starting with these glyphs, the model can 
identify the edge-level entities by decomposing a shape into 
edges, or find the group-level entities by joining several 
shapes to form a group. 

Though our model begins perceptual organization at the 
shape level, perceptual encoding, and thus the production of 
finished representations, is performed bottom-up, beginning 
at the edge level. Each representation depends on informa-
tion in the representation below it.  We now describe each 
level in turn. 

3.1 Edge Level 

Organization 
Our model computes edge-level representations using a sin-
gle shape as input.  Each shape is represented in CogSketch 
as a set of polylines, lists of points describing the lines 
drawn the user.  The model segments polylines into percep-
tually salient edges by identifying junctions where two or 
more edges meet [Biederman, 1987].  Junctions between 
two edges are identified by discontinuities in the curvature.  
For example, a square shape would have four strong discon-
tinuities where the four edges meet.  See [Lovett et al., 
2009b] for details on the edge segmentation algorithm.   



After edges have been identified, they are grouped into 
cycles. A cycle is a series of consecutive connected edges 
that closes on itself.  Thus, any closed shape will produce an  
edge cycle corresponding to its exterior.  Cycles play a key 
role in perceptual encoding. 

Encoding 
Given the edges, junctions between edges, and edge cycles, 
the model computes a qualitative, structural representation 
describing the spatial relations between the edges. This re-
presentation consists of attributes that describe a single 
edge; simple edge relations that describe how two edges 
relate to each other; and edge cycle relations, which de-
scribe the edges found in a cycle (see Table 1). 

The most basic attribute is PerceptualEdge, which de-
scribes any edge in a shape.  Edges are further classified as 
StraightEdge, CurvedEdge, or EllipticalEdge, where the 
last is a single edge that closes on itself to make a cycle, 
such as a circle or oval.  Straight edges can also be classified 
as axisAligned if they align with the vertical or horizontal 
axis.  Finally, edges are assigned a length attribute, based on 
their length relative to the longest edge in the shape. 

Simple edge relations are first-order relations between 
pairs of edges.  Some describe relative orientation; two 
edges may be parallel or perpendicular; parallel edges 
might also be collinear.  Others describe different ways the 
edges may intersect.  If two edges meet at a corner, they are 
connected, but if they cross each other at an x-junction, 
they intersect.  Edge cycle relations are more complex.  
First, every corner between consecutive edges in the cycle is 
classified as convex or concave.  These corners then serve 
as the arguments for higher-order attributes and relations.  
perpendicularCorner is a higher-order attribute describing 

a corner between perpendicular edges. cycleAdjacentAn-
gles describes two adjacent corners in a cycle.  Such pairs of 
corners can be further classified as acuteToObtuse or obtu-
seToAcute, thereby capturing rich details about the shape of 
the cycle.  Finally, parallelEdgeRelation and collinearEd-
geRelation, are higher-order attributes for pairs of edges in 
a cycle.  They are raised to the level of higher-order 
attributes to give them the same weight in the representation 
as the other edge cycle relations. 

Orientation 
The representation described above is primarily an orienta-
tion-invariant representation1.  Orientation-invariant repre-
sentations [e.g., Biederman, 1987] include no features that 
depend on an image’s orientation, and thus they remain con-
stant as the image rotates in space.  They are useful in tasks 
such as object recognition, in which an object should look 
about the same to the viewer regardless of viewing angle.  
In contrast, orientation-specific representations [Tarr et al., 
1997] do include features about orientation.  Thus, they con-
tain richer details and are useful when more information is 
required.  In our modeling, we have found that orientation-
invariant representations are often useful at the edge level, 
for example when comparing the edges in two shapes that 
are drawn at different orientations.  However, in most cases 
the orientation-specific representation is preferred when 
representing at the shape level or above.  

                                                 
1 One term, axisAligned, does depend on orientation. Howev-

er, we’ve found it to be a useful term when comparing shapes that 

have been rotated. 

Attributes Simple Edge Relations Edge Cycle Relations 

 PerceptualEdge 

 StraightEdge/CurvedEdge/EllipseEdge 

 length(Tiny/Short/Medium/Long) 

 axisAligned 

 edgesPerpendicular 

 edgesParallel 

 edgesCollinear 

 elementsConnected 

 elementsIntersect 

 elementIntersects 

 convex/concaveAngleBetweenEdges 

 cycleAdjacentAngles 

 adjacentAcuteToObtuseAngles/ 

adjacentObtuseToAcuteAngles 

 perpendicularCorner 

 parallelEdgeRelation 

 collinearEdgeRelation 

Table 1. Edge-level qualitative vocabulary.  

 

 

Attributes Simple Edge Relations Edge Cycle Relations 

 VerticalEdge 

 HorizontalEdge 

 ObliqueEdge-Upward/Downward 

 CurvedEdge-Right/Left/Up/Down 

Bumped 

 rightOf/above 

 edgesCurveCompati ble 

 edgeCurveCompatibleWith 

 

 leftToRightCorner/rightToLeftCorner/ 

topToBottomCorner/bottomToTopCorner 

 verticallyOrientedCorner/ 

horizontallyOrientedCorner 

Table 2. Additional terms for orientation-specific representations.  

 



When the task demands it, our model can supplement the 
qualitative terms in Table 1 with an additional set of terms 
(see Table 2), producing an orientation-specific representa-
tion at the edge level.  Here, the attributes are more specific, 
supplying the orientation of each straight or curved edge, 
e.g., an ObliqueEdge-Upward is a straight edge that slants 
upward going from left to right, while a CurvedEdge-
RightBumped is an edge that curves to the right.  The sim-
ple edge relations describe the relative position of pairs of 
edges (rightOf/above), as well as curve compatibility: 
when two curved edges meet at a corner, is the curvature of 
the edges in the same direction as the curvature of the corner 
between them.  This second relation is not strictly orienta-
tion-specific; however, it is an added detail not included in 
the sparser orientation-invariant representation.  Lastly, the 
edge cycle relations describe the relative location of two 
edges connected at a corner (e.g., leftToRightCorner) and 
the overall orientation of a corner (a verticallyOriented-
Corner is one in which one edge is above the other). 

 

3.2 Shape Level 

In contrast with the edge level, the shape level contains 
many more attributes, reflecting the greater complexity of 
each entity at this level.  Importantly, the shape level builds 
upon the edge level in the sense that many shape attributes 
are based on edge-level features.  Any time an edge attribute 
or relation holds for all the edges in a shape, that feature 
―bubbles up‖ to the shape level2.  Thus, for example, a 
shape may be classified as convex if all its corners are con-
vex, or straight if all its edges are straight. 

Organization 
Organization at the shape level is performed by the CogS-
ketch user.  Each CogSketch glyph is treated as a shape, 
with two exceptions: 1) If there are multiple glyphs that 
intersect and are not closed shapes, they will be grouped 
together to form a shape.  For example, if two intersecting 
line segments have been imported from PowerPoint as sepa-

                                                 
2 Presently, we only allow features from the sparser orienta-

tion-invariant edge-level representation to bubble up. 

 

Basic Attributes Edge-Based Attributes Symmetry Attributes Location Attributes 

 2D-Shape-Generic 

 2D-Shape-Open/Closed 

 2D-Shape-Forked 

 2D-Shape-Oblique O 

 VerticalEdge/ 

HorizontalEdgeO 

 Dot-Shape 

 Implicit-Shape 

 

 2D-Shape-Convex 

 2D-Shape-

Curved/Straight/Ellipse 

 2D-Shape-Axis-AlignedO 

 2D-Shape-Perpendicular 

 

 Symmetric-Shape 

 Perpendicular-Symmetric-

Shape 

 Multiply-Symmetric-

Shape 

 Fully-Symmetric-Shape 

 Non-Elongated-Shape 

 Centered-Element 

 OnTop-Element/ 

OnBottom-Element O 

 OnRight-Element/ 

OnLeft-ElementO 

 
Size Attributes Color/Texture Attributes 

 narrowEdges/wideEdged 

 (Tiny/Small/Medium/Large)SizeShape 

 (ObjectsColoredFn color) 

 (ObjectsBorderColoredFn color) 

 TexturedObject 

 
Spatial Relations Alignment Relations Transformation Relations 

 rightOf/above O 

 onRightHalfOf/onLeftHalfOf O 

 onTopHalfOf/OnBottonHalfOf O 

 centeredOn 

 elementsIntersect 

 elementsOverlap 

 elementContains 

 parallelElements 

 perpendicularElements 

 collinearElements 

 centeredOn 

 reflectedShapes-XAxis 

 reflectedShapes-YAxis 

 reflectedShapes 

 rotatedShapes-90 

 rotatedShapes-180 

 rotatedShapes 

Table 3. Shape-level qualitative vocabulary.  Terms marked with an 
O 

are orientation-specific. 



rate glyphs, they will be grouped to form a single ―X‖ 
shape. 2) A set of straight, parallel, adjacent line segments 
can be grouped to form a texture.  In this way, the system 
can automatically detect simple textures and assign them to 
shapes. 

Encoding 
See Table 3 for the full set of attributes and relations.  Here, 
we include orientation-specific and orientation-invariant 
terms together, although orientation-specific terms are 
marked with an ―O.‖ Basic attributes describe general fea-
tures of a shape, such as whether it is open or closed and 
whether it contains forks (junctions where more than two 
edges meet). There are also several special classes of 
shapes: shapes consisting of a single straight edge may be 
vertical, horizontal, or oblique. A Dot-Shape is a shape 
too small to have noticeable features. An Implicit-Shape is 
a shape that was not drawn as a glyph, but instead is implied 
by negative space between other glyphs. 

The next two sets of attributes depend on the edge-level 
representation.  Edge-based attributes are features that have 
―bubbled up‖ from the edge level.  Symmetry attributes de-
scribe axes of symmetry detected over the edge-level repre-
sentation; see section 4.1 for more information about this.  

The following two sets of attributes describe relative loca-
tion and relative size.  Relative location is a shape’s location 
relative to the other shapes in its image.  In contrast, size is 
typically computed relative to the distribution of sizes 
across all the images being considered, so that shapes in 
different images with the same size will have the same size 
attribute.  Relative size is given both for the width of a 
shape’s edges and (for closed shapes) for the overall area of 
the shape. 

The last set of attributes describe appearance, rather than 
shape.  A shape may have separate colors for its border and 
its fill.  Additionally, it may be classified as a TexturedOb-
ject if it is filled with a texture—a repeating series of paral-
lel lines. 

Spatial relations (Table 3, bottom left) are the basic rela-
tions computed by CogSketch between glyphs.  rightOf and 
above give the location of one shape relative to another.  
The next three relations, are topological relations describing 
containment and intersection [Lovett and Forbus, 2009].  
The final four relations describe relative location for con-
tained shapes.  For example, onRightHalfOf describes a 
shape that is contained within another shape but on its right 
half, whereas centeredOn describes a shape that is within 
and centered on another shape. 

Alignment relations mostly apply to shapes that consist of 
only a single edge.  Like edges, these shapes can be parallel 
or perpendicular. Additionally, if one shape is an edge, 
another shape can be centered on it, or a shape can be colli-
near with it if it lies along an extension of that edge.  Note 
that centeredOn is thus both a spatial relation and an 
alignment relation. 

The last set of relations describes two objects’ relative 
shapes.  One object might be a reflection or a rotation of 
another.  These are described in greater detail in section 4.1. 

3.3 Group Level 

The group level is not entirely separate from the shape level.  
At the group level, shapes that can be grouped together are.  
Those that cannot are still encoded as individual shapes.  
Thus, there can be relations between groups, between 
shapes, and between groups and shapes. 

The group level depends on the shape level in that only 
objects with the same shape can be grouped together.  Thus, 
for example, a group might consist of a set of circles or a 
row of identical triangles. See section 4.1 for a description 
of how the model compares two objects to determine that 
they are the same shape. 

Organization 
There are several requirements for grouping shapes togeth-
er; these are based upon the Gestalt grouping rules [Palmer 
and Rock, 1994], which describe how people tend to group 
objects in their visual field: 
1) Similarity: Shapes should be the same shape and size. 
2) Proximity: Shapes in a group should be equally distant 

from each other. 
3) Good continuation: Shapes should be axis-aligned [Pal-

mer, 1980].  That is, a line connecting the shapes 
should run along either their axes of symmetry or their 
axes of elongation.  Because circles have an infinite 
number of axes of symmetry, they are the easiest shapes 
to group. 

Encoding 
The only spatial term unique to groups is ProximalShape-
Group, a general attribute applied to all groups.  Otherwise, 
the qualitative vocabulary for groups is the same as that for 
shapes. 

Some groups consist of a row of objects.  Such groups 
may be treated the same as individual edges for alignment 
relations.  Thus, two rows of shapes may be parallel, or a 
shape may be collinear with a row if it lies along that row’s 
extension. 

4 The Role of Comparison 

Comparison has two important purposes in the spatial hie-
rarchy. Firstly, during bottom-up representation building, 
comparison at the edge level supports perceptual encoding 
at the shape level.  The model can determine that one shape 
is a rotation or reflection of another shape by comparing 
their edge-level representations. Similarly, the model can 
identify axes of symmetry in a shape by comparing its edge-
level representation to itself [Ferguson, 1994]. 

Secondly, during problem-solving, comparisons between 
images can support perceptual reorganizing, in which an 
image is segmented into a different set of entities to make 
the images more similar [Medin et al., 1993].  We term this 
comparison-based segmentation. We now describe each of 
these. 

 
 



4.1 Comparing Edges in Shapes  

The last set of shape-level relations are transformation rela-
tions, which describe rotations or reflections between 
shapes.  Our approach for finding a transformation between 
two shapes is based on the research on mental rotation 
[Shepard and Metzler, 1971, in which an individual is 
shown two shapes and asked whether one is a rotation of the 
other.  A common finding in studies of mental rotation is 
that the time required to identify a rotation between shapes 
is proportional to the degrees of rotation between the shapes 
[Shepard and Cooper, 1982].  This has led to the theory that 
people perform an analog rotation in their mind, mentally 
transforming one shape to align it with the other.  However, 
another finding is that the time is usually proportional to the 
degrees of rotation along the shortest possible route between 
the shapes, suggesting that people know which direction to 
rotate one shape before they’ve even begun rotating. 

We have proposed [Lovett et al., 2009b] the following 
model to explain how people might perform mental rota-
tions (see Figure 2 for an example): 

1) Given two shapes, compare their edge-level, orienta-
tion-invariant representations. Comparison via structure-
mapping will produce a set of correspondences between the 
edges in the two shapes. 

2) Pick one pair of corresponding edges.  For example, 
given the arrows in Figure 2, the corresponding long stems 
might be particularly salient.  Find the shortest possible ro-
tation between this pair.  This should be easy for a single 
pair of edges.  In this case, there is clearly a 45-degree rota-
tion between one stem and the other. 

3) Apply this rotation to the other edges in the first shape.  
Check whether the corresponding edges are now aligned.  
Applying the transformation to the full set of edges should 
be more difficult, and we suspect this is the part of the 
process that requires time proportional to the degrees of 
rotation. 

Our model uses this approach to compare shapes and de-
termine when there is a rotation or a reflection between the 
shapes.  This information can then be encoded at the shape 
level.   

A similar approach is used to identify axes of symmetry.  
A shape’s edge-level representation is compared to itself 
[Ferguson, 1994] to compute one or more mappings be-
tween the edges.  Each mapping is evaluated, meaning that 
it may be possible to find more than one axis of symmetry.  
There are several different symmetry attributes (see Table 
2). An appropriate attribute is assigned during encoding 
based on the number of axes of symmetry and whether there 
are any perpendicular axes (such as would be found in a 
square, rectangle or rhombus). 

4.2 Comparison-Based Segmentation  

Because comparison-based segmentation takes place during 
problem-solving, rather than representation building, we 
now consider an actual problem. Figure 3 shows a 
progressive matrix problem, in which an individual must 
solve for the missing image in the 3x3 matrix. Our model 
solves problems like these [Lovett et al., 2010] by 
comparing the images in each row to determine how the 
images change going across the row.  This requires finding 
the corresponding entities in each row. 

Let us consider the first row.  Recall that representations 
are constructed bottom-up but attended to top-down.  Thus, 
when solving this problem, the model would begin with a 
group-level representation.  In each of these three images, 
there will be two entities: an arrow shape and a group of 
circles.  However, these are not the optimal representations 
for solving this problem.  Ideally, the group of circles in the 
middle image would be segmented into two columns of 
circles.  This would allow the model to capture the fact that, 
going across the row, there is a group of circles to the left of 
the arrow in the first two images and to the right of the 
arrow in the last two images. 

   The model achieves this through the following steps: 
1) Compare adjacent images via SME to find 

corresponding entities. 
2) Evaluate each pair of corresponding entities by 

comparing their parts. For groups, this means comparing 
their shape-level representations.  For shapes, this means 
comparing their edge-level representations.  In this case, the 
arrow shapes would be compared, and the model would 
determine that the arrow is rotating 90 degrees. The groups 
of circles would be compared, and the model would 
determine that the two circles in the left image align with 
the leftmost two circles in the middle image, while the two 
circles in the right image align with the rightmost two 
circles in the middle image. 

3) When possible, segment groups or shapes so that there 
will be identical corresponding entities in the different 
images. In this case, segment the four circles in the middle 
image into the column that will align with the left image and 
the column that will align with the right image. 

In this way, comparison can guide perceptual 

A            B  
Figure 2. Two arrow shapes.    
 

 

 

Figure 3. A progressive matrix problem.  Choose which of the 

eight possible answers best completes the 3x3 matrix. 



reorganization, in which an image is segmented into a 
different set of entities that better facilitates problem-
solving. 

5 Visual Problem-Solving 

We now briefly consider three problem-solving tasks. Our 
models for all three tasks use the representation scheme 
described above. 

5.1 Oddity Task 

In the oddity task (Figure 1), an individual is shown an array 
of images and asked to pick the one that doesn’t belong 
[Dehaene et al., 2006].  Our model of this task [see Lovett et 
al., 2008 for a preliminary version] compares a subset of the 
images using SME to compute an analogical generalization 
[Kuehne et al., 2000] which describes what is common to 
all their representations.  It then compares the remaining 
images to the generalization to see if one of them is noticea-
bly less similar. 

The model always begins at the group level and then fo-
cuses down to the edge level if it fails to find an answer.  
For example, consider the problems in Figure 1.  Neither of 
them contain any groups, so the initially representations will 
be equivalent to shape-level representations.  In the first 
problem, a generalization over half the images (e.g., the 
bottom row) indicates that every image has a containment 
relation.  The upper left image lacks this relation, so when it 
is compared to the generalization, it will be less similar. 

On the second problem, the model will fail to produce an 
answer with the group-level representation.  Because ―qua-
drilateral‖ is not an attribute in the qualitative vocabulary, 
there is no shape-level feature that distinguishes one shape 
from the others.  Thus, the model will move down to the 
edge level and try again.  At this level, the model will form 
a generalization containing four edges with convex corners 
between them.  The upper left image only has three edges, 
so its representation will be less similar. 

5.2 Geometric Analogy 

Geometric analogy problems (e.g., Figure 4) come in the 
form ―A is to B as C is to…?‖  To solve them, one must 
determine the differences between images A and B, and 
then solve for an image D such that the same differences 
apply between C and D. 

Our model supports two alternative strategies for solving 
these problems [see Lovett et al., 2009b for a model that 
only supports the first strategy]: 

1) Compare images A and B to find Δ(A,B), the differ-
ences between A and B (see section 4.2 for a partial discus-
sion of this).  For each possible answer x, compare C to x to 
compute Δ(C,x).  Compare Δ(A,B) to each answer’s Δ(C,x).  
Pick the answer whose differences with C are the most simi-
lar to B’s differences with A. 

2) Compare images A and B to find Δ(A,B). Compare 
images A and C to find the corresponding entities between 
them. Apply the differences, Δ(A,B), to the corresponding 
entities in C to compute D’, the expected answer.  Compare 
D’ to each actual answer, choosing the most similar. 

Again, the model always begins with a group-level repre-
sentation. It never fully reverts to the edge level, but it will 
perform comparison-based segmentation as needed. 

5.3 Raven’s Progressive Matrices 

Raven’s Matrices [Raven et al., 1998] is an intelligence test 
in which individuals are shown a 3x3 array of images with 
the bottom right image missing, and they must solve for the 
image that best completes the matrix. Figure 3 shows an 
example problem, although not one from the actual test. 

Our model for solving these problems [Lovett et al., 
2010] is a more complex version of geometric analogy strat-
egy 1) above.  First, the model compares the images in the 
top row to compute Δ(top), a representation of the differ-
ences going across the top row.  Then, it compares the im-
ages in the middle row to compute Δ(middle).  It compares 
the two of these to compute an analogical generalization, 
Δ(row), which describes the differences going across each 
row of the matrix.  Then, it iterates over each possible an-
swer, inserting that answer into the bottom row and compar-
ing the resultant Δ(bottom) to Δ(row).  The answer which 
produces a Δ(bottom) most similar to the other rows is se-
lected. As above, the model begins with the group-level 
representation and performs comparison-based segmenta-
tion as needed. 

5.4 Results 

Results for preliminary versions of each of these models 
have been reported elsewhere [Lovett et al., 2008; Lovett et 
al., 2009b; Lovett et al., 2010]; see those publications for 
details on how the models are evaluated. We have now rep-
licated those results using the representation scheme de-
scribed above. In each case, the model performs at least as 
well as the typical human on the task, and problems that are 
difficult for the model are also difficult for people. 

6 Discussion 

A potential weakness of any computational model’s repre-
sentation is that it may be overly tailored to fit a target task.  
By using the same representation scheme across multiple 
tasks, we have provided evidence for the generality of our 
model.  While the tasks require different processes for solv-
ing, they all begin with the same input representation. In 

 

Figure 4. Geometric analogy problem from [Evans, 1968; 

Lovett et al., 2009b] 



addition, they all apply the same principle to that representa-
tion: begin with the highest-level representation, and move 
down in the hierarchy as necessary to solve the problem. 

Our three-level hierarchy is fairly basic—human repre-
sentations of space likely possess more levels and greater 
flexibility. However, it is sufficient for demonstrating the 
utility of a hierarchical approach.  Moving up the hierarchy, 
complex information at one level can be summarized as a 
single attribute or relation at the level above.  Moving down 
the hierarchy, mappings between high-level entities can 
guide more in-depth explorations of corresponding parts 
within those entities. Future work will involve exploring 
more interactions between hierarchical representation and 
spatial cognition. 
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