
Constructing Spatial Representations of Variable Detail for Sketch Recognition

Andrew Lovett Morteza Dehghani Kenneth Forbus

{andrew-lovett, morteza, forbus}@northwestern.edu
Qualitative Reasoning Group, Northwestern University

2133 Sheridan Road, Evanston, IL 60201 USA

Abstract

We describe a system which constructs spatial representations
of sketches drawn by users. These representations are
currently being used as the input for a spatial reasoning
system which learns classifiers for performing sketch
recognition. The spatial reasoning system requires
representations at a level of detail sparser than that which the
representation constructor normally builds. Therefore, we
describe how the representation constructor ranks the
expressions in its output so that the number of expressions in
the representation can be decreased with minimal loss of
information. We evaluate the overall system, showing that it
is able to learn and utilize classifiers for complex sketches
even when the representation size is sharply diminished.

1. Introduction
One of the major problems in spatial reasoning systems is
generating initial representations to be used as input to the
systems. If a researcher is primarily interested in testing the
system, such representations can be, and often are,
generated by hand. However, if a system is to be truly
useful, there needs to be a component which automatically
constructs the representation, based directly on visual data.
Depending on the task, this data may vary from movies, to
photographs, to hand-drawn sketches, to simple line
drawings. Obviously, the problems that arise in constructing
a representation vary across these media. However, there are
certain constraints that arise regardless of the type of image
being processed.

There are two general constraints on any system which
constructs spatial representations. First, the representations
must be sufficiently detailed for accomplishing the task at
hand. For example, in a recognition task, a representation of
a coffee mug will probably need to incorporate the
information that the image contains a large, upright cylinder
and a second, curved cylinder (the handle) that connects to
the larger cylinder at each of its ends. Note that the degree
of detail needed will vary depending on the task. For
example, if the task is to reason about heat transfer from a
coffee mug, then it may also be necessary to represent the
wavy lines indicating liquid in the cup, or even the lines
floating above the cup that indicate it is giving off heat.

Unfortunately, the first constraint cannot be met by
simply providing the maximum possible degree of detail.
The representations must also be simple enough to avoid
overwhelming the spatial reasoning system. This constraint

can be seen as a simplified form of the classic framing
problem in AI. A visual scene, even a simple one, has a
huge number of objects, properties of objects, and relations
between objects that could potentially be attended to.
However, in most cases, a small subset of this information is
all that is necessary for performing a task. The rest of the
information will at best distract the spatial reasoning
system, and at worst cause it to fail. It is the job of the
representation constructor to determine which information is
necessary and which information can be left out.

Given the tradeoff between the sufficient detail
constraint and the simplicity constraint, we believe one goal
in making representation constructors should be to design
systems that are flexible in the degree of detail they include
in their representations. This will allow them to be used in
varying tasks which demand different degrees of detail, as
well as allowing them to be used with varying reasoning
systems that can handle different degrees of detail.

One general way in which a system can vary the detail
in its output representations is to compute a representation
to the fullest possible detail but assign a priority ranking to
each expression in the representation. For example, consider
the case of a simple rectangle. The fact that this is a closed
shape with four sides is particularly important, and it should
probably be included in any representation of the shape.
The fact that two of the sides are longer than the other two is
less important, and it might be left out of the representation
in cases where a sparser representation is needed. Note that
a priority ranking might be task-general, meaning that
certain expressions are always considered more important
than other expressions, or it might be task-specific, meaning
that certain expressions are considered more important for
certain tasks.

In this paper, we will be discussing our approach to
constructing and using spatial representations. Our work is
based on reasoning about hand-drawn sketches. Sketches
are, of course, much easier to process than photographic
images. Because they consist only of the edges of objects,
they allow us to skip edge detection, one of the more
difficult tasks in visual processing. However, processing
sketches is far from trivial. Hand-drawn sketches lack
straight lines or clear corners between lines. They tend to
contain a large amount of noise, depending on how carefully
they were drawn. Thus, the problem of sketch perception
involves taking a set of noisy lines and representing them in
a clean format useful for higher-level spatial reasoning.

In the following sections, we will describe our system
in greater detail. We will begin by discussing open-domain
sketch perception, the task for which our system is being
used. We will then cover the spatial reasoning system that
performs this task. We will describe how the representation
constructor builds its representation. We will talk about how
the constructor ranks expressions in the representation so
that the degree of detail can be controlled. Finally, we will
give experimental evidence showing that this is an effective
means of controlling the representation size.

2. The Sketch Recognition Task
Our interest in sketching stems from working with sKEA,
the sketching Knowledge Entry Associate (Forbus et al.
2004). sKEA is an open-domain sketch understanding
system. It builds representations of sketches drawn by users
and incorporates these representations in various reasoning
tasks, such as comparing sketches and looking for
differences. sKEA is able to build a representation of a
sketch by any user without any prior expectations regarding
what the user will be sketching for one key reason: it does
not perform recognition. Rather, it relies on the user to
divide a sketch up into units, called glyphs, and to tell it
what object each unit represents. Labels for each glyph can
be picked from a knowledge base containing over 25,000
categories. sKEA then computes a set of spatial relations
between the glyphs found in a sketch. It combines this
information with its semantic knowledge about each glyph’s
label to build a representation of the sketch that can be used
in spatial reasoning tasks.

One of sKEA’s drawbacks is the requirement that users
manually segment their sketches into glyphs and label each
glyph. This limits sKEA’s user base to those who
understand the concept of a glyph and are capable of
identifying the most appropriate category for each glyph.
Even among experienced users, the requirement that every
glyph be labeled can become onerous, particularly when a
user is setting up an experiment that requires drawing many
instances of the same object.

sKEA’s limitations led us to ask whether it would be
possible to add a recognition component to sKEA without
sacrificing its domain-independence. Unfortunately, open-
domain sketch recognition is a significant problem. Even a
classifier designed to identify sketches of a single object,
such as a book, must deal with significant variability in the
way that object can be sketched. As the set of possible
objects increases, the potential for confusion between the
objects also increases. There may be greater similarity
between a sketch of a book and a sketch of a box, or a
computer screen, than between two sketches of books. In an
unconstrained drawing task, there is no way to predict what
object a user will sketch, so the set of possible objects must
include every conceivable object.

For these reasons, most sketch recognition systems are
constrained to a narrow domain containing a small set of

possible objects (e.g., circuit diagrams: Liwicki and
Knipping 2005; simple symbols: Anderson, Bailey, and
Skubic 2004; architectural objects: Park and Kwon, 2003).
By limiting the domain, the creators of these systems can
identify every object the systems will be required to
identify. They can then either hand-code classifiers for each
object or train the classifiers on a large body of data (700
images for Liwicki and Knipping 2005). Even systems
designed to work in multiple domains require that the
classifiers for each domain be hand-coded (Alvarado et al.
2002). The systems created in this way are powerful when
used within their domains, but they fail when given any
input outside of those domains.

We believe the key to sketch recognition in the absence
of domain expectations is efficient, online learning. Our
goal is to build a system that constructs classifiers for
different objects on-the-fly during a sketching session. The
first time a user sketches an object, the system will have no
way of knowing what the object is. However, after the user
labels the object, the system will remember the
representation for that object. In the future, if the system
sees a similar object, it will guess that the new object is a
new instance of the old object’s category. If the system is
wrong, the user still has the option of using sKEA’s labeling
function to correct it.

As we have stated above, different sketches of an object
may vary widely. The best way to learn to recognize an
object is by considering multiple examples of the object and
identifying the features most common to those examples.
However, we do not wish to build a system that requires
some minimum number of examples before it can learn to
classify an object (and certainly not a number in the
hundreds). If the system is to be useful within a single
sketching session, it should build a usable classifier based
on the very first example of an object it sees. It should then
use each additional example of the object to fine-tune the
classifier. Thus, this task requires a spatial reasoning system
capable of efficient, incremental learning of classifiers for
sketched objects.

3. Comparison and Generalization
In this section, we will describe how our system builds
classifiers for each encountered object and uses these
classifiers to categorize new sketches. Note that these
processes work independent of the component which
constructs the representation for each sketch. They constrain
that component in terms of the size of the representation
they can handle and the format in which the representation
must be encoded, but they are otherwise agnostic as to the
content of the sketch representations. This allows us to
study the problem of building spatial representations
independent of the problem of sketch recognition. The
component which constructs the representations will be
described in the following section.

Our system classifies sketches through a comparison
process. Once a representation of a sketched object has
been produced, the system compares it to the representations
of previously encountered object. If a sketch’s
representation is sufficiently similar to another object, the
system concludes that the sketch is another instance of that
object. In cases where multiple instances of an object have
been encountered, a generalization of the representations of
all those instances is computed. This generalization can then
be compared to the new sketch’s representation in the same
way.

We perform comparison using SME, the Structure
Mapping Engine (Falkenhainer, Forbus, and Gentner 1989).
SME is a computational model of similarity and analogy. It
is based on Gentner’s (1983) structure-mapping theory,
which states that humans draw analogies between two cases
by aligning their common structure. SME works on
structured representations, consisting of entities, attributes
of entities, and relations between entities or between other
relations. Given two cases, a base and a target, it begins by
finding all possible correspondences between entities,
attributes, and relations in the two cases. It combines
consistent correspondences to find a global mapping
between the cases with the maximum systematicity.
Systematicity is the depth of the aligned structure.
Correspondences between higher-order relations, i.e.,
relations between relations, are deeper than and thus
preferred to simple relations between entities.

We perform generalization using SEQL (Kuehne,
Forbus, and Gentner 2000; Halstead and Forbus 2005).
SEQL models generalization as a process of progressive
alignment. Each known category is represented by a
generalization. When a category is first created, this
generalization is simply the representation of the first
known instance in the category. When a new instance of a
category is found, its representation is aligned with the
generalization using SME. Expressions in the generalization
that have a corresponding expression in the new instance are
strengthened. Expressions in the generalization that do not
have a corresponding expression are weakened. This is done
by simply associating a probability value with each
expression in the generalization. This probability value tells
the percentage of instances of the category containing an
expression which aligns with that particular expression.
Note that when new instances are added to a category, any
expressions in their representation that fail to align with
anything in the generalization can be added to the
generalization, with an associated probability value of 1 /
(the total number instances).

4. Building Spatial Representations
The representation constructor begins with a set of lines
drawn in sKEA. Its processes can be divided into two steps.
In the first step, it segments the rough sketch into a set of
edges. In the second step, it produces a qualitative

representation of the edges. These two steps are described
below. For a more detailed description, see Lovett,
Dehghani, and Forbus (2006).

Perceptual Elements
Our system utilizes a bottom-up approach for sketch
perception. Given a set of polylines, lists of points
representing lines drawn by the user, it begins by
segmenting them into atomic units called segments. Each
segment is a short straight line. These segments can then be
grouped together to form progressively larger, more
complex perceptual elements.

Before segments can be grouped together, their
endpoints must be classified. The endpoints, i.e., the points
at the beginning and end of each segment, can be classified
as connections, corners, or terminations. A connection is a
point at which two segments along the same edge meet. A
corner is a point at which two segments along different
edges meet. For example, in the case of a square, all the
segments along each edge are joined by connections. The
last segment of one edge and the first segment of an
adjacent edge are joined by a corner. Finally, terminations
are endpoints of a segment that are not joined to any other
segment. Closed shapes such as squares contain no
segments with terminations. On the other hand, a single
straight line will have terminations at each of its ends.

Once endpoints have been classified, grouping
segments is a trivial matter. Chains of segments joined by
connections are grouped together to form edges. If two
segments are joined by corners, then the edges those
segments are each grouped into are also joined by corners.
Thus, the grouping process creates a set of edges with
various corners connecting them. These corners are used to
group the edges into connected edge groups. A connected
edge group is a maximal list of sequentially connected
edges. Connected edge groups in which the first and last
edge are the same, i.e., edge groups that form a closed
shape, are cycles, while connected edge groups that begin
and end with a termination are paths. Once the edges,
connections between edges, and connected edge groups
have been calculated, the system can begin building the
representation.

Qualitative Representation
Our system builds qualitative representations of sketches,
meaning it avoids using absolute values. This is vitally
important for any task involving comparisons between
sketches. Absolute values, such as the length of a particular
edge, may vary greatly across different sketches, depending,
for example, on the scale at which each sketch is drawn, but
qualitative values like the relative lengths of the edges are
much more likely to remain constant.

One of our primary tasks in building this system was to
design an appropriate qualitative vocabulary for
representing the edges, attributes of edges, and relationships

between edges in a sketch. This vocabulary needed to be
general enough that it could be used to represent any sketch,
regardless of the type of object being drawn. Fortunately, in
building our vocabulary, we were able to draw on the work
done by previous researchers who had shared an interest in
qualitative representations of sketches or line drawings. In
particular, we looked at the qualitative vocabularies used by
Ferguson and Forbus (1999), Museros and Escrig (2004),
and Veselova and Davis (2004). Many of the terms in our
vocabulary were used by one or more of those researchers.
However, those researchers were primarily concerned with
representing relatively simple sketches. We found that in
order to properly represent sketches of greater complexity,
and particularly in order to represent sketches of three-
dimension objects, it was necessary to add a few terms to
the vocabulary.

The terms in the vocabulary can be split into three
types: attributes, pairwise relations, and anchoring relations.
Attributes are simple descriptors for individual edges. Each
edge is classified as one of three possible types: straight,
curved, or elliptical. Straight edges can also be classified as
horizontal or vertical, if they align with the x- or y-axes.

Pairwise relations describe basic relationships between
pairs of edges, including relative length, relative orientation,
and relative location. Because relationships exist between
every pair of edges in the sketch, the number of pairwise
relations can grow at an alarming rate. Furthermore, many
of the relationships are irrelevant or redundant. Therefore,
we follow Veselova and Davis (2004) in only asserting
pairwise relations between adjacent edges, i.e., edges that do
not have another edge between them.

In additional to the pairwise relations described above,
there are also pairwise relations describing connections
between edges. Edges may be connected because their
endpoints are joined as corners, or they may be connected
because they intersect each other. In cases where a corner
between edges is located along a cycle, that corner can be
further classified as convex or concave.

The final set of terms are the anchoring relations. They
are called anchoring relations because, unlike the simpler
attributes and pairwise relations, they describe more than
two edges and contain greater structural depth. Because of
SME’s systematicity bias, this greater amount of structure
causes them to be matched first when two representations
are being compared. Thus, they play the role of anchoring
the SME mappings between representations.

There are two types of anchoring relations. The first
type describe simple closed shapes. Anchoring relations are
asserted for each thee-sided or four-sided closed shape in
the sketch. The second type describe junctions between
edges. Junctions are asserted for points at which three edges
join. These junctions are classified as arrow junctions, fork
junctions, tee junctions, or other junctions. Positional
relations between junctions are also asserted, to provide
additional structure for anchoring the match.

5. Controlling the Representation Size
One early discovery we made regarding our representation
constructor was that the representations it built were simply
too large. A simple sketch, such as a cylinder might be
represented by as few as 50 expressions, but larger, more
complicated sketches, contained as many as 600 expressions
in their representations. Representations of this size were
simply too much for SME and SEQL to handle. Our
representation constructor was committing a fatal violation
of the simplicity constraint.

We chose to address this problem by allowing the
spatial reasoning system to restrict the representation to an
arbitrary number of facts. That is, the system could choose
to accept only the first N expressions in the representation,
and to ignore the remaining ones. Of course, this is a
dangerous strategy if the ordering of the facts in the
representation is unknown. If N expressions were taken
from the representation at random, it is possible that one or
two vitally important expressions would be left out. Thus, it
became necessary to assign a priority ranking to expressions
in the representation, so that instead the N most important
expressions could be chosen.

We rank expressions by two factors: the predicate of
the expression and the edges involved in the expression.
Predicates are divided into three groups: defining attributes,
anchoring relations, and others. These groups mostly align
with the attributes, anchoring relations, and pairwise
relations described above. Defining attributes, which tell
what type of edge an entity represents, receive the highest
ranking because any time an entity is included in a
representation, the representation ought to describe what the
entity is. Anchoring relations receive the second-highest
priority because of the important role they play in anchoring
a match. Other terms receive the lowest priority. These
include pairwise relations and the attributes stating whether
a straight edge is vertical or horizontal.

Edges are grouped into the following categories:
external, external-adjacent, external-connected, and internal.
An external edge is an edge which touches the outer bounds
of the entire sketch. These edges are deemed the most
important because they can provide the most information for
recovering the overall shape of the sketch. External-adjacent
edges are edges that connect to external edges. These edges
can also provide useful information about the sketch’s
shape. External-connected edges are edges that are part of a
connected edge group that contains at least one external
edge. The internal edges do not connect to outer edges.
They can provide information about the details of a sketched
object, but they usually do not help to describe its shape.

Expressions are ranked first by predicate, and then by
edges. That is, all expressions with defining attributes and
anchoring relations are ranked above all expressions with
other predicates. Among the defining attributes and
anchoring relations, and then among the other predicates,
expressions are ranked by the lowest-ranked edge. Thus, a

pairwise expression between an edge-adjacent edge and an
edge-connected edge would be ranked at the same level as a
pairwise expression between two edge-adjacent edges.
Expressions of the same rank are ordered randomly, with
the exception of the following somewhat arbitrary ranking
of the other predicates: corners and connections, relative
orientation and length, and relative position.

The rankings as they have been described above were
chosen to be task- and domain-general. That is, we believe
that anchoring relations and external edges should be
important for representing any sketch. However, we made
one additional decision that we believe would not generalize
to all other tasks, or even to all other stimuli within the
recognition task: we do not assert relations about internal
edges. This means that, for example, in a sketch containing
a larger square with two smaller circles inside it, the
representation would say that were two ellipses inside the
square, but it would not give their positions relative to each
other or to the sides of the square. Thus far, we have found
that this heuristic has simplified the problem of sketch
recognition, but again, we do not claim that it would
generalize. Fortunately, it could be easily removed if the
need arose.

Figure 1. Sketches drawn by subjects

6. Experiment
We evaluated our sketch recognition system using sketches
of eight everyday objects: a house, a brick, an over, a cup, a
refrigerator, a bucket, a fireplace, and a cylinder. We
selected an example of each of these objects from Sun up to
Sun Down (Buckley 1979), a book which uses simple
drawings to illustrate physical processes such as heat
transfer. 10 subjects were asked to sketch the eight objects,
using the example illustrations as guides. These examples
were provided so that all subjects would draw the same type
of object from the same perspective. However, subjects
were instructed to only include those parts of the illustration
that they believed were necessary to indicate what the object
was. As we had hoped, there was significant cross-subject
variation in the way each object was drawn, but there tended
to be core features common to most or all sketches of an
object (see Figure 1 for examples). Thus, we decided the

task we had created for our system was difficult, but not
impossible. One subject’s sketches were thrown out because
the subject failed to follow directions. The remaining 9
subject’s 72 total sketches made up our corpus of training
and test data.

We tested the system by running a series of trial runs.
In a single trial run, the 9 subjects’ sketches were randomly
divided into a training set, containing 5 sketches of each
object, and a test set, containing the remaining 4 sketches of
the objects. Generalizations for each object were built from
the representations of the 5 sketches in the training set. The
sketches in the test set were then evaluated by comparing
them to each generalization and picking the most similar
generalization.

Figure 2. Cylinders, buckets, and cups drawn by subjects

Preliminary tests indicated that three objects were
commonly confused: the cup, the bucket, and the cylinder.
This is hardly surprising, as these objects are quite similar,
and there were sometimes more differences between
sketches of the same object than there were between
sketches of the different objects (see Figure 2). We therefore
chose to evaluate our system using two criteria. Under the
strong criterion, only a classification into the correct object
category was counted as correct. Under the weak criterion,
a classification into any of the three cylindrical categories
was counted as correct as long as the object belonged in any
of the three categories.

One of our goals in evaluating the system was to
determine how limiting the number of expressions in the
representation of a sketch would affect results. Recall that
when the entire representations were allowed, some
representations grew to as large as 600 expressions. Our
goal was to cut the representation size to about a quarter of
that. We therefore tried four max representation sizes: 100,
150, 175, 225.

Results
For each representation size, we ran 80 trial runs and
averaged the results. We measured accuracy according to
both the strong and weak criteria. Note that chance
performance on the strong criterion would be 12.5%, while
chance performance on the weak criterion would be 16.7%.
We found that performance far exceeded chance with all
representation sizes (see Figure 3). The greatest results were
achieved with 175 expressions in the representations. With
this representation size, the strong criterion was met 77% of
the time, while the weak criterion was met 93.5% of the

time. We found that the increase in performance between a
representation size of 100 and 150 was statistically
significant (p < .05). However, there were no significant
differences between the results with sizes of 150, 175, and
225.

70%

75%

80%

85%

90%

95%

100 150 175 225

Number of Expressions

A
c
c
u

ra
c
y

Strong

Weak

Figure 3. Results with varying representation sizes

7. Conclusion
Our system was effective at classifying sketches into the
eight object categories. Performance was far above chance,
and performance on the weak criterion was near-perfect.
Furthermore, the best results were achieved with a max
representation size of 175 expressions, close to a quarter of
the size of the full size of the most complex sketches.
Increasing the representation size from 175 to 225 failed to
improve performance. In fact, it resulted in a slight dip in
performance, although the change was not statistically
significant. Therefore, we think it likely that a max
representation size of around 175 is optimal, given our
current representation scheme. The optimal size might
change if a different set of sketches were used, but given the
wide range in the complexity of these sketches, with the full
representation size varying from 50 to 600, we think it
likely that a limit of 175 is generally appropriate for the task
of sketch recognition.

While we have demonstrated that our system for
constructing representations of sketches is effective for the
sketch recognition task, it remains to be seen whether the
system is flexible enough to deal with other spatial
reasoning tasks. We are particularly interested in
determining whether the ranking of expressions used here
can be used in other tasks which require a greater or lesser
level of detail. Examples of other spatial reasoning tasks
being studied in our group include geometric analogy and
spatial preposition use. In the future, we hope to show that
a single sketch representation scheme can be used, in
coordination with different spatial reasoning systems, to
solve a variety of such tasks.

Acknowledgments
This research was supported by a grant from the Computer
Science Division of the Office of Naval Research.

References
Alvarado, C., Oltmans, M., and Davis, R. 2002. A Framework for

Multi-Domain Sketch Recognition. In 2002 AAAI Spring
Symposium on Sketch Understanding. Palo Alto, CA.

Anderson, D., Bailey, C., and Skubic, M. 2004. Hidden Markov
Model Symbol Recognition for Sketch-Based Interfaces. In
Making Pen-Based Interaction Intelligent and Natural, 15-21.
Arlington, VA: AAAI Press.

Buckley, S. 1979. Sun Up to Sun Down. McGraw Hill: New York.
Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The Structure-

Mapping Engine: Algorithms and Examples. Artificial
Intelligence 41: 1-63.

Ferguson, R. W., and Forbus, K. D. 1999. GeoRep: A Flexible
Tool for Spatial Representations of Line Drawings. In
Proceedings of the 13th International Workshop on Qualitative
Reasoning (QR’99), 84-91. Loch Awe, Scotland.

 Forbus, K., Lockwood, K., Klenk, M., Tomai, E., and Usher,
J. 2004. Open-Domain Sketch Understanding: The nuSketch
Approach. In AAAI Fall Symposium on Making Pen-based
Interaction Intelligent and Natural, 58-63. Washington, DC:
AAAI Press.

Gentner, D. 1983. Structure-Mapping: A Theoretical Framework
for Analogy. Cognitive Science 7: 155-170.

Halstead, D., and Forbus, K. 2005. Transforming between
Propositions and Features: Bridging the Gap. In Proceedings of
the 20th National Conference on Artificial Intelligence
(AAAI’05). Pittsburgh, PA: AAAI Press.

Kuehne, S., Forbus, K., Gentner, D., and Quinn, B. 2000. SEQL:
Category Learning as Progressive Abstraction Using Structure
Mapping. In Proceedings of the 22nd Annual Conference of the
Cognitive Science Society, 770-775. Philadelphia, PA.

Liwicki, M., and Knipping, L. 2005. Recognizing and Simulating
Sketched Logic Circuits. In Proceedings of the 9th International
Conference on Knowledge-Based Intelligent Information &
Engineering Systems, 588 – 594. Melbourne, Australia: LNCS.

Lovett, A., Dehghani, M., and Forbus, K. 2006. Efficient Learning
of Qualitative Descriptions for Sketch Recognition. In
Proceedings of the 20th International Workshop on Qualitative
Reasoning (QR’06). Hanover, NH.

Museros, L., & Escrig, M. T. 2004. A Qualitative Theory for
Shape Representations and Matching. In Proceedings of the 18th
International Workshop on Qualitative Reasoning (QR’04).
Evanston, IL.

Park, J., and Kwon, Y-B. 2003. Main Wall Recognition of
Architectural Drawings Using Dimension Exension Line. In
Proceedings of the Fifth IAPR International Workshop on
Graphics Recognition (GREC’03), 116-127. Barcelona, Spain:
Springer.

Veselova, O., and Davis, R. 2004. Perceptually Based Learning of
Shape Descriptions. In Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI’04), 482-487. San
Jose, CA: AAAI Press.

