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Abstract 

We describe a system which constructs spatial representations 
of sketches drawn by users. These representations are 
currently being used as the input for a spatial reasoning 
system which learns classifiers for performing sketch 
recognition. The spatial reasoning system requires 
representations at a level of detail sparser than that which the 
representation constructor normally builds.  Therefore, we 
describe how the representation constructor ranks the 
expressions in its output so that the number of expressions in 
the representation can be decreased with minimal loss of 
information. We evaluate the overall system, showing that it 
is able to learn and utilize classifiers for complex sketches 
even when the representation size is sharply diminished.   

1. Introduction 
One of the major problems in spatial reasoning systems is 
generating initial representations to be used as input to the 
systems.  If a researcher is primarily interested in testing the 
system, such representations can be, and often are, 
generated by hand.  However, if a system is to be truly 
useful, there needs to be a component which automatically 
constructs the representation, based directly on visual data.  
Depending on the task, this data may vary from movies, to 
photographs, to hand-drawn sketches, to simple line 
drawings. Obviously, the problems that arise in constructing 
a representation vary across these media. However, there are 
certain constraints that arise regardless of the type of image 
being processed. 

There are two general constraints on any system which 
constructs spatial representations.  First, the representations 
must be sufficiently detailed for accomplishing the task at 
hand.  For example, in a recognition task, a representation of 
a coffee mug will probably need to incorporate the 
information that the image contains a large, upright cylinder 
and a second, curved cylinder (the handle) that connects to 
the larger cylinder at each of its ends.  Note that the degree 
of detail needed will vary depending on the task. For 
example, if the task is to reason about heat transfer from a 
coffee mug, then it may also be necessary to represent the 
wavy lines indicating liquid in the cup, or even the lines 
floating above the cup that indicate it is giving off heat. 

Unfortunately, the first constraint cannot be met by 
simply providing the maximum possible degree of detail.  
The representations must also be simple enough to avoid 
overwhelming the spatial reasoning system.  This constraint 

can be seen as a simplified form of the classic framing 
problem in AI.  A visual scene, even a simple one, has a 
huge number of objects, properties of objects, and relations 
between objects that could potentially be attended to.  
However, in most cases, a small subset of this information is 
all that is necessary for performing a task.  The rest of the 
information will at best distract the spatial reasoning 
system, and at worst cause it to fail.  It is the job of the 
representation constructor to determine which information is 
necessary and which information can be left out. 

Given the tradeoff between the sufficient detail 
constraint and the simplicity constraint, we believe one goal 
in making representation constructors should be to design 
systems that are flexible in the degree of detail they include 
in their representations.  This will allow them to be used in 
varying tasks which demand different degrees of detail, as 
well as allowing them to be used with varying reasoning 
systems that can handle different degrees of detail.   

One general way in which a system can vary the detail 
in its output representations is to compute a representation 
to the fullest possible detail but assign a priority ranking to 
each expression in the representation. For example, consider 
the case of a simple rectangle.  The fact that this is a closed 
shape with four sides is particularly important, and it should 
probably be included in any representation of the shape.  
The fact that two of the sides are longer than the other two is 
less important, and it might be left out of the representation 
in cases where a sparser representation is needed.  Note that 
a priority ranking might be task-general, meaning that 
certain expressions are always considered more important 
than other expressions, or it might be task-specific, meaning 
that certain expressions are considered more important for 
certain tasks. 

In this paper, we will be discussing our approach to 
constructing and using spatial representations.  Our work is 
based on reasoning about hand-drawn sketches.  Sketches 
are, of course, much easier to process than photographic 
images.  Because they consist only of the edges of objects, 
they allow us to skip edge detection, one of the more 
difficult tasks in visual processing.  However, processing 
sketches is far from trivial.  Hand-drawn sketches lack 
straight lines or clear corners between lines.  They tend to 
contain a large amount of noise, depending on how carefully 
they were drawn. Thus, the problem of sketch perception 
involves taking a set of noisy lines and representing them in 
a clean format useful for higher-level spatial reasoning. 



In the following sections, we will describe our system 
in greater detail.  We will begin by discussing open-domain 
sketch perception, the task for which our system is being 
used.  We will then cover the spatial reasoning system that 
performs this task.  We will describe how the representation 
constructor builds its representation. We will talk about how 
the constructor ranks expressions in the representation so 
that the degree of detail can be controlled. Finally, we will 
give experimental evidence showing that this is an effective 
means of controlling the representation size.   

2. The Sketch Recognition Task 
Our interest in sketching stems from working with sKEA, 
the sketching Knowledge Entry Associate (Forbus et al. 
2004). sKEA is an open-domain sketch understanding 
system.  It builds representations of sketches drawn by users 
and incorporates these representations in various reasoning 
tasks, such as comparing sketches and looking for 
differences. sKEA is able to build a representation of a 
sketch by any user without any prior expectations regarding 
what the user will be sketching for one key reason: it does 
not perform recognition. Rather, it relies on the user to 
divide a sketch up into units, called glyphs, and to tell it 
what object each unit represents.  Labels for each glyph can 
be picked from a knowledge base containing over 25,000 
categories. sKEA then computes a set of spatial relations 
between the glyphs found in a sketch. It combines this 
information with its semantic knowledge about each glyph’s 
label to build a representation of the sketch that can be used 
in spatial reasoning tasks. 

One of sKEA’s drawbacks is the requirement that users 
manually segment their sketches into glyphs and label each 
glyph. This limits sKEA’s user base to those who 
understand the concept of a glyph and are capable of 
identifying the most appropriate category for each glyph. 
Even among experienced users, the requirement that every 
glyph be labeled can become onerous, particularly when a 
user is setting up an experiment that requires drawing many 
instances of the same object.   

sKEA’s limitations led us to ask whether it would be 
possible to add a recognition component to sKEA without 
sacrificing its domain-independence. Unfortunately, open-
domain sketch recognition is a significant problem.  Even a 
classifier designed to identify sketches of a single object, 
such as a book, must deal with significant variability in the 
way that object can be sketched. As the set of possible 
objects increases, the potential for confusion between the 
objects also increases. There may be greater similarity 
between a sketch of a book and a sketch of a box, or a 
computer screen, than between two sketches of books.  In an 
unconstrained drawing task, there is no way to predict what 
object a user will sketch, so the set of possible objects must 
include every conceivable object.   

For these reasons, most sketch recognition systems are 
constrained to a narrow domain containing a small set of 

possible objects (e.g., circuit diagrams: Liwicki and 
Knipping 2005; simple symbols: Anderson, Bailey, and 
Skubic 2004; architectural objects: Park and Kwon, 2003).  
By limiting the domain, the creators of these systems can 
identify every object the systems will be required to 
identify.  They can then either hand-code classifiers for each 
object or train the classifiers on a large body of data (700 
images for Liwicki and Knipping 2005). Even systems 
designed to work in multiple domains require that the 
classifiers for each domain be hand-coded (Alvarado et al. 
2002). The systems created in this way are powerful when 
used within their domains, but they fail when given any 
input outside of those domains. 

We believe the key to sketch recognition in the absence 
of domain expectations is efficient, online learning.  Our 
goal is to build a system that constructs classifiers for 
different objects on-the-fly during a sketching session. The 
first time a user sketches an object, the system will have no 
way of knowing what the object is.  However, after the user 
labels the object, the system will remember the 
representation for that object.  In the future, if the system 
sees a similar object, it will guess that the new object is a 
new instance of the old object’s category.  If the system is 
wrong, the user still has the option of using sKEA’s labeling 
function to correct it. 

As we have stated above, different sketches of an object 
may vary widely. The best way to learn to recognize an 
object is by considering multiple examples of the object and 
identifying the features most common to those examples.  
However, we do not wish to build a system that requires 
some minimum number of examples before it can learn to 
classify an object (and certainly not a number in the 
hundreds).  If the system is to be useful within a single 
sketching session, it should build a usable classifier based 
on the very first example of an object it sees.  It should then 
use each additional example of the object to fine-tune the 
classifier. Thus, this task requires a spatial reasoning system 
capable of efficient, incremental learning of classifiers for 
sketched objects. 

3. Comparison and Generalization 
In this section, we will describe how our system builds 
classifiers for each encountered object and uses these 
classifiers to categorize new sketches. Note that these 
processes work independent of the component which 
constructs the representation for each sketch. They constrain 
that component in terms of the size of the representation 
they can handle and the format in which the representation 
must be encoded, but they are otherwise agnostic as to the 
content of the sketch representations.  This allows us to 
study the problem of building spatial representations 
independent of the problem of sketch recognition.  The 
component which constructs the representations will be 
described in the following section. 



Our system classifies sketches through a comparison 
process.  Once a representation of a sketched object has 
been produced, the system compares it to the representations 
of previously encountered object. If a sketch’s 
representation is sufficiently similar to another object, the 
system concludes that the sketch is another instance of that 
object.  In cases where multiple instances of an object have 
been encountered, a generalization of the representations of 
all those instances is computed. This generalization can then 
be compared to the new sketch’s representation in the same 
way.  

We perform comparison using SME, the Structure 
Mapping Engine (Falkenhainer, Forbus, and Gentner 1989).  
SME is a computational model of similarity and analogy.  It 
is based on Gentner’s (1983) structure-mapping theory, 
which states that humans draw analogies between two cases 
by aligning their common structure. SME works on 
structured representations, consisting of entities, attributes 
of entities, and relations between entities or between other 
relations.  Given two cases, a base and a target, it begins by 
finding all possible correspondences between entities, 
attributes, and relations in the two cases. It combines 
consistent correspondences to find a global mapping 
between the cases with the maximum systematicity.  
Systematicity is the depth of the aligned structure.  
Correspondences between higher-order relations, i.e., 
relations between relations, are deeper than and thus 
preferred to simple relations between entities. 

We perform generalization using SEQL (Kuehne, 
Forbus, and Gentner 2000; Halstead and Forbus 2005).  
SEQL models generalization as a process of progressive 
alignment. Each known category is represented by a 
generalization. When a category is first created, this 
generalization is simply the representation of the first 
known instance in the category.  When a new instance of a 
category is found, its representation is aligned with the 
generalization using SME. Expressions in the generalization 
that have a corresponding expression in the new instance are 
strengthened.  Expressions in the generalization that do not 
have a corresponding expression are weakened. This is done 
by simply associating a probability value with each 
expression in the generalization.  This probability value tells 
the percentage of instances of the category containing an 
expression which aligns with that particular expression.  
Note that when new instances are added to a category, any 
expressions in their representation that fail to align with 
anything in the generalization can be added to the 
generalization, with an associated probability value of 1 / 
(the total number instances). 

4. Building Spatial Representations 
The representation constructor begins with a set of lines 
drawn in sKEA.  Its processes can be divided into two steps.  
In the first step, it segments the rough sketch into a set of 
edges. In the second step, it produces a qualitative 

representation of the edges.  These two steps are described 
below. For a more detailed description, see Lovett, 
Dehghani, and Forbus (2006). 

Perceptual Elements 
Our system utilizes a bottom-up approach for sketch 
perception.  Given a set of polylines, lists of points 
representing lines drawn by the user, it begins by 
segmenting them into atomic units called segments.  Each 
segment is a short straight line.  These segments can then be 
grouped together to form progressively larger, more 
complex perceptual elements. 

Before segments can be grouped together, their 
endpoints must be classified.  The endpoints, i.e., the points 
at the beginning and end of each segment, can be classified 
as connections, corners, or terminations.  A connection is a 
point at which two segments along the same edge meet.  A 
corner is a point at which two segments along different 
edges meet.  For example, in the case of a square, all the 
segments along each edge are joined by connections.  The 
last segment of one edge and the first segment of an 
adjacent edge are joined by a corner.  Finally, terminations 
are endpoints of a segment that are not joined to any other 
segment. Closed shapes such as squares contain no 
segments with terminations.  On the other hand, a single 
straight line will have terminations at each of its ends. 

Once endpoints have been classified, grouping 
segments is a trivial matter.  Chains of segments joined by 
connections are grouped together to form edges.  If two 
segments are joined by corners, then the edges those 
segments are each grouped into are also joined by corners.  
Thus, the grouping process creates a set of edges with 
various corners connecting them.  These corners are used to 
group the edges into connected edge groups.  A connected 
edge group is a maximal list of sequentially connected 
edges.  Connected edge groups in which the first and last 
edge are the same, i.e., edge groups that form a closed 
shape, are cycles, while connected edge groups that begin 
and end with a termination are paths. Once the edges, 
connections between edges, and connected edge groups 
have been calculated, the system can begin building the 
representation. 

Qualitative Representation 
Our system builds qualitative representations of sketches, 
meaning it avoids using absolute values. This is vitally 
important for any task involving comparisons between 
sketches.  Absolute values, such as the length of a particular 
edge, may vary greatly across different sketches, depending, 
for example, on the scale at which each sketch is drawn, but 
qualitative values like the relative lengths of the edges are 
much more likely to remain constant. 

One of our primary tasks in building this system was to 
design an appropriate qualitative vocabulary for 
representing the edges, attributes of edges, and relationships 



between edges in a sketch.  This vocabulary needed to be 
general enough that it could be used to represent any sketch, 
regardless of the type of object being drawn. Fortunately, in 
building our vocabulary, we were able to draw on the work 
done by previous researchers who had shared an interest in 
qualitative representations of sketches or line drawings. In 
particular, we looked at the qualitative vocabularies used by 
Ferguson and Forbus (1999), Museros and Escrig (2004), 
and Veselova and Davis (2004).  Many of the terms in our 
vocabulary were used by one or more of those researchers.  
However, those researchers were primarily concerned with 
representing relatively simple sketches. We found that in 
order to properly represent sketches of greater complexity, 
and particularly in order to represent sketches of three-
dimension objects, it was necessary to add a few terms to 
the vocabulary. 

The terms in the vocabulary can be split into three 
types: attributes, pairwise relations, and anchoring relations.  
Attributes are simple descriptors for individual edges.  Each 
edge is classified as one of three possible types: straight, 
curved, or elliptical. Straight edges can also be classified as 
horizontal or vertical, if they align with the x- or y-axes. 

Pairwise relations describe basic relationships between 
pairs of edges, including relative length, relative orientation, 
and relative location.  Because relationships exist between 
every pair of edges in the sketch, the number of pairwise 
relations can grow at an alarming rate.  Furthermore, many 
of the relationships are irrelevant or redundant. Therefore, 
we follow Veselova and Davis (2004) in only asserting 
pairwise relations between adjacent edges, i.e., edges that do 
not have another edge between them. 

In additional to the pairwise relations described above, 
there are also pairwise relations describing connections 
between edges.  Edges may be connected because their 
endpoints are joined as corners, or they may be connected 
because they intersect each other.  In cases where a corner 
between edges is located along a cycle, that corner can be 
further classified as convex or concave. 

The final set of terms are the anchoring relations.  They 
are called anchoring relations because, unlike the simpler 
attributes and pairwise relations, they describe more than 
two edges and contain greater structural depth.  Because of 
SME’s systematicity bias, this greater amount of structure 
causes them to be matched first when two representations 
are being compared.  Thus, they play the role of anchoring 
the SME mappings between representations. 

There are two types of anchoring relations.  The first 
type describe simple closed shapes.  Anchoring relations are 
asserted for each thee-sided or four-sided closed shape in 
the sketch. The second type describe junctions between 
edges.  Junctions are asserted for points at which three edges 
join.  These junctions are classified as arrow junctions, fork 
junctions, tee junctions, or other junctions. Positional 
relations between junctions are also asserted, to provide 
additional structure for anchoring the match. 

5. Controlling the Representation Size 
One early discovery we made regarding our representation 
constructor was that the representations it built were simply 
too large.  A simple sketch, such as a cylinder might be 
represented by as few as 50 expressions, but larger, more 
complicated sketches, contained as many as 600 expressions 
in their representations.  Representations of this size were 
simply too much for SME and SEQL to handle.  Our 
representation constructor was committing a fatal violation 
of the simplicity constraint.   

We chose to address this problem by allowing the 
spatial reasoning system to restrict the representation to an 
arbitrary number of facts.  That is, the system could choose 
to accept only the first N expressions in the representation, 
and to ignore the remaining ones. Of course, this is a 
dangerous strategy if the ordering of the facts in the 
representation is unknown. If N expressions were taken 
from the representation at random, it is possible that one or 
two vitally important expressions would be left out.  Thus, it 
became necessary to assign a priority ranking to expressions 
in the representation, so that instead the N most important 
expressions could be chosen. 

We rank expressions by two factors: the predicate of 
the expression and the edges involved in the expression.  
Predicates are divided into three groups: defining attributes, 
anchoring relations, and others.  These groups mostly align 
with the attributes, anchoring relations, and pairwise 
relations described above.  Defining attributes, which tell 
what type of edge an entity represents, receive the highest 
ranking because any time an entity is included in a 
representation, the representation ought to describe what the 
entity is. Anchoring relations receive the second-highest 
priority because of the important role they play in anchoring 
a match. Other terms receive the lowest priority.  These 
include pairwise relations and the attributes stating whether 
a straight edge is vertical or horizontal.  

Edges are grouped into the following categories: 
external, external-adjacent, external-connected, and internal.  
An external edge is an edge which touches the outer bounds 
of the entire sketch.  These edges are deemed the most 
important because they can provide the most information for 
recovering the overall shape of the sketch. External-adjacent 
edges are edges that connect to external edges.  These edges 
can also provide useful information about the sketch’s 
shape.  External-connected edges are edges that are part of a 
connected edge group that contains at least one external 
edge. The internal edges do not connect to outer edges.  
They can provide information about the details of a sketched 
object, but they usually do not help to describe its shape. 

Expressions are ranked first by predicate, and then by 
edges.  That is, all expressions with defining attributes and 
anchoring relations are ranked above all expressions with 
other predicates. Among the defining attributes and 
anchoring relations, and then among the other predicates, 
expressions are ranked by the lowest-ranked edge.  Thus, a 



pairwise expression between an edge-adjacent edge and an 
edge-connected edge would be ranked at the same level as a 
pairwise expression between two edge-adjacent edges.  
Expressions of the same rank are ordered randomly, with 
the exception of the following somewhat arbitrary ranking 
of the other predicates: corners and connections, relative 
orientation and length, and relative position. 

The rankings as they have been described above were 
chosen to be task- and domain-general. That is, we believe 
that anchoring relations and external edges should be 
important for representing any sketch.  However, we made 
one additional decision that we believe would not generalize 
to all other tasks, or even to all other stimuli within the 
recognition task: we do not assert relations about internal 
edges.  This means that, for example, in a sketch containing 
a larger square with two smaller circles inside it, the 
representation would say that were two ellipses inside the 
square, but it would not give their positions relative to each 
other or to the sides of the square. Thus far, we have found 
that this heuristic has simplified the problem of sketch 
recognition, but again, we do not claim that it would 
generalize.  Fortunately, it could be easily removed if the 
need arose. 

 
Figure 1. Sketches drawn by subjects 

6. Experiment 
We evaluated our sketch recognition system using sketches 
of eight everyday objects: a house, a brick, an over, a cup, a 
refrigerator, a bucket, a fireplace, and a cylinder. We 
selected an example of each of these objects from Sun up to 
Sun Down (Buckley 1979), a book which uses simple 
drawings to illustrate physical processes such as heat 
transfer. 10 subjects were asked to sketch the eight objects, 
using the example illustrations as guides.  These examples 
were provided so that all subjects would draw the same type 
of object from the same perspective. However, subjects 
were instructed to only include those parts of the illustration 
that they believed were necessary to indicate what the object 
was. As we had hoped, there was significant cross-subject 
variation in the way each object was drawn, but there tended 
to be core features common to most or all sketches of an 
object (see Figure 1 for examples). Thus, we decided the 

task we had created for our system was difficult, but not 
impossible. One subject’s sketches were thrown out because 
the subject failed to follow directions. The remaining 9 
subject’s 72 total sketches made up our corpus of training 
and test data. 

We tested the system by running a series of trial runs.  
In a single trial run, the 9 subjects’ sketches were randomly 
divided into a training set, containing 5 sketches of each 
object, and a test set, containing the remaining 4 sketches of 
the objects. Generalizations for each object were built from 
the representations of the 5 sketches in the training set.  The 
sketches in the test set were then evaluated by comparing 
them to each generalization and picking the most similar 
generalization.   

 
Figure 2. Cylinders, buckets, and cups drawn by subjects 

Preliminary tests indicated that three objects were 
commonly confused: the cup, the bucket, and the cylinder.  
This is hardly surprising, as these objects are quite similar, 
and there were sometimes more differences between 
sketches of the same object than there were between 
sketches of the different objects (see Figure 2). We therefore 
chose to evaluate our system using two criteria.  Under the 
strong criterion, only a classification into the correct object 
category was counted as correct.  Under the weak criterion, 
a classification into any of the three cylindrical categories 
was counted as correct as long as the object belonged in any 
of the three categories. 

One of our goals in evaluating the system was to 
determine how limiting the number of expressions in the 
representation of a sketch would affect results.  Recall that 
when the entire representations were allowed, some 
representations grew to as large as 600 expressions. Our 
goal was to cut the representation size to about a quarter of 
that.  We therefore tried four max representation sizes: 100, 
150, 175, 225.   

Results 
For each representation size, we ran 80 trial runs and 
averaged the results.  We measured accuracy according to 
both the strong and weak criteria. Note that chance 
performance on the strong criterion would be 12.5%, while 
chance performance on the weak criterion would be 16.7%.  
We found that performance far exceeded chance with all 
representation sizes (see Figure 3). The greatest results were 
achieved with 175 expressions in the representations. With 
this representation size, the strong criterion was met 77% of 
the time, while the weak criterion was met 93.5% of the 



time.  We found that the increase in performance between a 
representation size of 100 and 150 was statistically 
significant (p < .05).  However, there were no significant 
differences between the results with sizes of 150, 175, and 
225. 
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Figure 3. Results with varying representation sizes 

7. Conclusion 
Our system was effective at classifying sketches into the 
eight object categories.  Performance was far above chance, 
and performance on the weak criterion was near-perfect.  
Furthermore, the best results were achieved with a max 
representation size of 175 expressions, close to a quarter of 
the size of the full size of the most complex sketches. 
Increasing the representation size from 175 to 225 failed to 
improve performance. In fact, it resulted in a slight dip in 
performance, although the change was not statistically 
significant. Therefore, we think it likely that a max 
representation size of around 175 is optimal, given our 
current representation scheme. The optimal size might 
change if a different set of sketches were used, but given the 
wide range in the complexity of these sketches, with the full 
representation size varying from 50 to 600, we think it 
likely that a limit of 175 is generally appropriate for the task 
of sketch recognition. 

While we have demonstrated that our system for 
constructing representations of sketches is effective for the 
sketch recognition task, it remains to be seen whether the 
system is flexible enough to deal with other spatial 
reasoning tasks. We are particularly interested in 
determining whether the ranking of expressions used here 
can be used in other tasks which require a greater or lesser 
level of detail. Examples of other spatial reasoning tasks 
being studied in our group include geometric analogy and 
spatial preposition use.  In the future, we hope to show that 
a single sketch representation scheme can be used, in 
coordination with different spatial reasoning systems, to 
solve a variety of such tasks. 
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