

A Performancevs.Trust Perspective in the Designof End-Point Congestion
Control Protocols

�

AleksandarKuzmanovic
�

andEdwardW. Knightly
RiceUniversity�

akuzma,knightly � @rice.edu

Abstract

Receiver-driven TCP protocols delegate key congestion
control functions to receivers. Their goal is to exploit in-
formationavailable only at receivers in order to improve
latency and throughput in diversescenariosranging from
wirelessaccesslinks to wireline and wirelesswebbrows-
ing. Unfortunately, in contrast to today’ssender-drivenpro-
tocols, receiver-drivencongestioncontrol introducesan in-
centivefor misbehavior. Namely, theprimarybeneficiary of
a flow (thereceiverof data)hasboththemeansandincen-
tiveto manipulatethecongestioncontrol algorithm in order
to obtainhigher throughput or reducedlatency. In this pa-
per, we studythe deployability of receiver-driven TCP in
environmentswith untrustedreceivers which may tamper
with the congestioncontrol algorithm for their own bene-
fit. Usinganalytical modeling andextensivesimulationex-
periments,weshowthatdeployment of receiver-drivenTCP
must strike a balance betweenenforcement mechanisms,
which can limit performance, and completetrust of end-
points, which resultsin vulnerability to cheaters and even
DoSattackers.

1. Intr oduction

Recentadvancesin TCPcongestioncontroldesignhave
demonstratedtheability to significantly improve TCPper-
formancein a variety of scenarios,ranging from high-
speed(e.g.,[9, 15]) to mobileandwirelessnetworks (e.g.,
[2, 4]). However, eachsuchadvanceintroducesthefollow-
ing dilemma: if a user can obtain a significant increase
in throughput via an optimized congestion control algo-
rithm, how canthe network or the otherendpoint distin-
guishamong(i) userswith optimizedprotocol stacks,(ii)

� This research is supported by NSF Grants ANI-0099148 and ANI-
0331620.�
Thefirst authorwill join theCSDepartment of NorthwesternUniver-
sity in December2004.

“cheater’s” that have modified protocol stacksthat maxi-
mizetheirown throughputwithoutregard to fairnessor net-
workstability, and(iii) attackersthatseekonly to transmitat
ahighratein ordertodeny servicetoothers.Moreprecisely,
the question becomes how canmisbehavior be detectedin
thepresenceof widely variable protocol performance pro-
files?And mostimportantly, protocol innovationsoftenin-
troducenovel securitychallenges,which, if not considered
a priori , mayhave devastatingconsequencesoncesuchin-
novationsbecome deployed.

TCPvariantsthatarewidely deployedtodayaresender-
centric protocols in which the senderperforms important
functionssuchascongestioncontrol andreliability, whereas
thereceiverhasminimumfunctionality via transmissionof
acknowledgementsto the sender. Yet, it is becoming evi-
dentthatincreasingthefunctionalityof receiverscansignif-
icantlyimproveTCPperformance[5, 10, 20, 29, 30, 31]. In-
deed, akey breakthroughin thisdesignphilosophy is repre-
sentedby fully receiver-centricprotocols in which all con-
trol functionsaredelegatedto receivers [12, 14]. Theben-
efits that are being establishedfor this innovative design
include improved TCP throughput and an array of other
performanceenhancements:(i) improvedlossrecovery; (ii)
more robust congestioncontrol; (iii) improvedpower man-
agement for mobile devices; (iv) a solution to the hand-
off problemin wirelessnetworks; (v) improvedbehavior of
network-specificcongestioncontrol; (vi) easymigrationto
a replicatedserver during handoffs; (vii) improved band-
width aggregation; and(viii) improvedwebresponsetimes.

However, bothsender- andreceiver-centricprotocolsim-
plicitly rely on theassumptionthatbothendpoints cooper-
atein determining theproperrateat which to senddata,an
assumption that is increasingly invalid today. With sender-
centricTCP-like congestioncontrol, the sendingendpoint
may misbehave by disobeying the appropriate congestion
control algorithmsandsenddatamorequickly. Fortunately,
the lack of a strongincentive for selfishInternet usersto
do so (uploadingvs. downloading)appearsto be themain
guardagainstsuchmisbehavior. Moreover, while it hasbeen
discoveredthatmisbehaving receivers canperform DoSat-

tacksor stealbandwidth evenwith sender-centricprotocols
[28], it hasbeenshown thatit is possibleto modify TCPto
entirelyeliminatethisundesirable behavior [6, 28].

On the other hand, receiver-centric congestioncontrol
presentsaperfectmatchfor amisbehaving user:thereceiv-
ing endpointperformsall congestioncontrolfunctions,and
hasboththeincentive (fasterwebbrowsingandfile down-
loads) andtheopportunity (opensourceoperating systems)
to exploit protocol vulnerabilities.In this paper, we explore
the tradeoffs and tensions betweenperformance and trust
for receiver-centric transport protocols.In particular, given
the above benefits(i)-(viii), and clear vulnerabilities,our
goal is to evaluate whetherit is possiblefor HTTP, file, and
streamingservers in theInternetto deploy receivercentric
transport protocols while striking a balance betweenper-
formance enhancementsand protectionagainst misbehav-
ior. We focus on the classof receiver-drivenprotocols be-
causetheir deployment introducesa set of novel security
challengesthatcanhave devastatingeffectson thewidely-
deployed HTTP, file, and streaming servers in the Inter-
net.Moreover, we show thatnone of theexisting solutions
areableto efficiently protecttheservers from suchreceiver
misbehaviors.

In thispaper, wefirst anticipateasetof possiblereceiver
misbehaviors, rangingfrom classicaldenial-of-serviceat-
tacks, e.g., receiver requestflooding, to more moderate
andconsequentlyharder-to-detectresource-stealingmanip-
ulations. We analyzemisbehaviors that forge the additive-
increase-multiplicative-decrease(AIMD) or retransmission
timeout (RTO) parameterssuchthatflows stealbandwidth
over longer time-scales.Furthermore, we develop an ana-
lytical modelby generalizing [22] to predict thethroughput
thata misbehavior will obtainasa functionof modifiedpa-
rameters.

Next, we evaluateandpoint out themain limitationsof
a setof state-of-the-artrouter- andedge-basedmechanisms
designedto detectandthwart denial-of-service attacksand
other flow misbehaviors.Wethenproposeandevaluateaset
of sender-sidemechanismsdesigned todetectandthwartre-
ceiver misbehavior, yet withoutanyhelpfrom a potentially
misbehaving receiver. Weinitially focusonlongtime-scales
and develop a TFRC-basedschemein which senders(i)
independently estimateRTT andlossratewithout any co-
operation from a potentially misbehaving receiver, (ii) dy-
namically compute the TCP-friendly rate,and (iii) detect
out-of-profile behavior. While this end-point approachat
the sender-side is able to accurately detecteven slight re-
ceiver misbehaviors andstrictly enforce TCP-friendliness,
we show that a fundamentaltradeoff arisesfrom the fact
thatin theabsenceof trustbetweenthesenderandreceiver,
it becomes problematic for thesenderto infer whetherthe
receiver is misbehaving or legitimately trying to optimize
its performancewith anenhanced protocolstack.

Finally, we analyzeshort-time-scalereceiver misbehav-
iors, andshow that the performance vs. trust tensionsig-
nificantly magnifies over shortertime-scales.For example,
we conduct a web experiment andshow that a malicious
client that usesexcessively long initial window size and
alsoforgesexponentialbackoff timers,cannot only signif-
icantly improve its own response time, but canalsodras-
tically degradethe responsetimesof the background traf-
fic. While sender-basedenforcementmechanisms(e.g.,rate
limiting) areagainsuccessfulagainstDoSattacks,weshow
that in HTTP scenariosdominated by short-lived flows,
suchmechanismscanoften limit receiver-driven TCP per-
formanceto alevelbelowthatachievableby today’ssender-
basedTCP.

2. Background

2.1. Delegating Control Functions to Receivers

Oneof thefirst transport protocolsthatexploitsincreased
receiver functionality is Clark et al.’s NETBLT [5], which
makes error recovery more efficient by placing the data
retransmissiontimer at the receiver. In later work, an in-
creasedsetof control functions appearat the receiver, ei-
ther for performance or practical reasons (e.g., to decrease
thecomputationburdenat thesender). For example,Sinha
et al.’s WTCP [29] calculatesthe sending rate at the re-
ceiver; Floyd et al.’s TFRC[10] maintainsthe losshistory
andcomputestheTCP-friendly rateat thereceiver;Tsaous-
sidisandZhang’s TCP-Real[31] trackslosseventsandde-
termines thedatadelivery rateat thereceiver; Springet al.
[30] andMehraet al. [20] addfunctionality to thereceiver
tocontrolthebandwidth sharesof incomingTCPflows,i.e.,
by adapting the receiver’s advertisedwindow anddelayin
transmittingack messages,thereceiver is ableto control the
bandwidth shareon theaccesslink according to theclient’s
needs.

2.2. Fully Receiver-Dri ven Transport Protocols

In contrast to the above protocols, all control func-
tions are delegated to receivers in Web Transport Proto-
col (WebTP)[12] and ReceptionControl Protocol (RCP)
[14]. Hsiehet al. [14] arguethatthekey advantage of fully
receiver-centrictransport protocols is thatthereceivercon-
trols howmuch datacanbesent, andwhich datashouldbe
sentby the sender. The benefitsthat arebeingestablished
for this protocol designare listed in the Introductionand
described in detailin [12, 14].

2.3. RCP Protocol

Here,we provide a brief overview of RCP, variants of
whichwe consider for theremainderof thepaper.1

RWND

CWND

SND.NXT
SND.UNA

Flow
Control

Reliability

Congestion Control

SendMuchNextSend

 Loss/

Progress

send buffer

SEG.ACK

SEG.WND

SEG.SEQ

SEG.ACK
SEG.WND

SEG.SEQ

RCV.NXT
RCV.WNDResequencing

recv buffer

T
�

CP SENDER

TCP RECEIVER

Figure 1. TCP functio nalities at the sender
and receiver

All TCPvariantsprovidereliablein-sequencedatadeliv-
ery to the application, with protocol operations consisting
mainly of four mechanisms:connectionmanagement,flow
control, congestioncontrol, andreliability. Figure1 depicts
a schematicview of theinteraction betweensenderandre-
ceiver in TCP, togetherwith severalstatevariables.

RCV.NXT
SEG.WND
REQ.NXT

Flow
Control

Reliability

Congestion Control

ReqMuch
NextReq

 Loss/

Progress

recv/
�
req buffer

SEG.REQ

SEG.DEQ

SEG.SEQ

SND.NXT Send

send buffer

R
�

CP RECEIVER

RCP SENDER
CWND

RWND

SEG.SEQ

SEG.REQ
SEG.DEQ

ReqMuch

Figure 2. RCP functionalities at the sender
and receiver

Observe thatexceptfor connectionmanagement,which
needs to be implemented at both ends,Figure2 indicates
that RCP delegates all other control functions to the re-
ceiver. Thus,eitherthesenderor receiver caninitiate con-
nection setup,after which the receiver becomes fully re-
sponsible for reliability, flow control, andcongestioncon-
trol, usingthe samewindow-basedmechanismsemployed
in sender-drivenTCP. SinceRCPshifts thecontrol of data
transfer from the senderto receiver, the data-ack style of

1 While we focuson RCP, similar receiver incentivesandprotocol vul-
nerabilities hold whether protocols delegatesomeor all control func-
tionsto receivers,e.g.,TFRC[10] andWebTP[12], respectively.

messageexchangein TCPis no longer applicable. Instead,
to achieve the self-clocking characteristics of TCP, RCP
usesreq-data exchangefor datatransfer, where any data
transferfrom thesenderis precededwith anexplicit request
(req) from thereceiver. Equivalently, theRCPreceiveruses
incoming data packetsto clock the requestsfor new data.
In summary, RCP representsa clone of sender-side TCP
which simply transfersall importantcontrol functionalities
to thereceiver. (We interchangeablyusethetermsRCPand
receiver-drivenTCP.)

However, thefactthatall control functionsaredelegated
to receivers raisesa fundamentalsecurityconcern for mis-
behaving receivers that will manipulate protocol parame-
ters(all availableat the receiver) andgain significantper-
formancebenefits.Thisconcernis amplifiedby thefactthat
receiverswould have theopportunity (open sourceoperat-
ing systemsrequiring aminorchange),andincentive(faster
web browsingandfile downloads)to perform suchactivi-
ties.

3. Vulnerabilities

3.1. Receiver Misbehaviors

Here,we treat two classesof misbehaviors in the con-
text of receiver-driventransport protocols: denial-of-service
attacksandresource stealing.Thekey distinctionbetween
the two lies in theprimary goalof themisbehaving client:
DoSattackersaim to deny serviceto thebackground flows
without necessarilyachieving a particular benefitfor them-
selves,whereas resourcestealersaimto gainaperformance
benefit by stealingresourcesfrom the background flows
(without necessarilystarvingthem).

3.1.1. Denial of Service Attacks We begin with an ex-
tremescenarioandshow that an RCP sendercanbecome
aneasytarget of a DoSattack.Indeed, Figure2 shows that
the RCPsenderlistensto the requestpackets from the re-
ceiver, andrepliesby sendingdatapacketswithoutanycon-
trol, asall controlfunctionsaredelegatedto thereceiver for
performancereasons.Hence,flooding thesenderwith short
req packets(the samesizeasthe ack packets, � 40Bytes)
may force the RCPsenderto flood the reversepath(from
theserverto theclient)with muchlongerdatapackets(typ-
ically � 1500Bytes),andcongestthenetwork.

To demonstratethevulnerabilityof fully receiver-driven
transport protocols,we simulatetheaboverequest-floodat-
tack and show the result in Figure 3. In the experiment,
sevenTCPSackflows sharea link, andat time 300sec,an
RCPflow joins theaggregate(weprovide theexactsimula-
tion parametersin Section5).However, weremovethecon-
gestioncontrol functions from theRCPflow (by re-tuning
theappropriateRCPparametersat thereceiver - detailsare
given below), suchthat it floods the server with requests.

0

0.2

0.4

0.6

0.8

1

1.2

250 300 350 400 450 500

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

	

Time (sec)

A misbehaving RCP flow
TCP aggregate

Figure 3. RCP receiver perf orms a DoS attac k
by flooding the sender with requests

Consequently, the RCP flow utilizes the entirebandwidth
anddeniesserviceto the background traffic by exploiting
TCP’swell-knownvulnerabilitytoattacksbyhigh-ratenon-
responsiveflows.

3.1.2. ResourceStealing In contrast,anunscrupulousre-
ceiver maymoderatelyre-tune its parameters in anattempt
to stealbandwidth from otherflows in the network while
eluding detection.Indeed, we will quantify the extent to
which it is harderto detectflows that moderately disobey
some(but not all) congestioncontrol rules (e.g., decrease
the window sizeupona packet loss,but do not halve it),
than it is to detectflows that dramatically violate one or
more congestioncontrol rules.

While the spaceof possiblereceiver misbehaviors is
vast,we focusonparameter-basedmisbehaviorssimplybe-
causethey are easyto implement. While receivers could
clearly useothermechanismsto achieve similar rates,we
demonstratein Section5 thatthis doesnotaffect thedetec-
tion problem.Furthermore,in thispaperwedonot treatthe
problemof application-level misbehaviors suchasparallel
download(whereamalicioususeropensmultipletransport-
layerconnectionsto parallelydownloaddifferent partitions
of a file from a server), which areeasierto detect.Never-
theless,observe that the misbehaviors analyzedin this pa-
peraremuchmoregeneric:(i) they canbesimply anden-
tirely implementedat thereceivers;(ii) amaliciousreceiver
canachieve a performancebenefitevenin scenarios where
a singletransport connection is usedfor download(e.g., in
theHTTP1.1web-serverscenariosor in thenon-partitioned
FTP-downloadscenarios).

The first parameterof interestis the additive-increase
parameter
 , which hasa default valueof onepacket per
round-trip time. By increasingthe window size moreag-
gressively (
���), a flow canachievehigher throughput.

Thesecondparameteris themultiplicative-decreasepa-
rameter � which hasa default valueof 0.5 suchthat the
congestionwindow is halved upon the receiptof conges-
tion indication. Again, the receiver can potentiallyutilize
morebandwidth by decreasingthewindow onlymoderately

via ��������� .
The third parameteris the retransmissiontimeoutRTO.

Both TCP and RCP usea retransmissiontimer to ensure
datadelivery in the absenceof any feedback from the re-
mote peer. In both cases,this value is computed using
smoothed round-trip time and round-trip time variation.
RFC2988 [27] recommendsto lower- andupper-bound this
value to 1 and 60sec,respectively. Thus,a maliciousre-
ceivermayeasilychangethesevalues.For example, by set-
ting theRTO to asmallvalue(e.g., 100ms),onecanexpect
to achieve throughput improvements in high packet loss
ratio environments, because the misbehaving flow would
back-off significantlylessaggressively thanbehaving flows
would.

Finally, the fourth parameter of interest is the initial
window size � . The default is two segments, whereas
RFC 2414[1] recommendsincreasingthis parameterto a
valuebetweentwo and four segments (roughly 4Kbytes)
to achieve a performance improvement.A misbehaving re-
ceivermightwish to further improveits performance(with-
out caring much about problemssuchas congestioncol-
lapse),andincreasethisparameterevenmore.By doing so,
the receiver canmaliciouslyjump-starttheRCPflow (this
is exactly whatwe did, among otherthings,in Figure3 by
setting������) andimprove its throughput.However, this
parameter is expectedto be crucial in improving the short
file-size response times which are typical for web brows-
ing.

3.2. Modeling Misbehaviors

We begin with thewell-known TCPthroughputformula
(Equation (30) in [22]) that expressesaverage TCP rateB
asa function of the round-trip time RTT, steady-stateloss
event ratep, TCP retransmissiontimeoutvalueRTO, and
number of packetsacknowledged by eachackb (typically� �� [13]):

��� "!#!%$ &('*)+-, "!/.10325476 98;: $ + '*)<>=@? 6 , :BA ? & = �
(1)

Using the stochasticTCP model and methodology of
[22], we generalizethe above result to a scenariowith ar-
bitrary valuesof
 and � . Denoting C as EDF� , we have

�
approximatedby

 "!#! $ &('*)FGIH�JLKNMO G5H(PQKRM , "!/.S0325476 98;: $ '*)EGIKNP7H(MTG5H�JUKRM& O H(V =*? 6 , :BA ? & = �
(2)

We provide the derivation in [16]. Note the two corner
cases:for
��W and ���X����� , Equations (1) and(2) are

equivalent;when �Y�- (when CZ�-), then
�\[]254_^

, i.e.,
if thecongestionwindow is never decreasedupona packet
loss,the throughput will theoreticallyconverge to infinity.
We explore intermediatecasesasfollows.

1

10

100

1000

0.001 0.01 0.1 1

T
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

`

Loss Rate (p)

PFTK
SQRT

alpha=4
beta=0.8
RTO=0.1

alpha=4, beta=0.8, RTO=0.1

Figure 4. Long -time-scale misbeha vior s - nu-
merical results

Figure 4 shows numerical resultsfor TCP (and hence
RCP)throughputasafunctionof thepacketlossrate.PFTK
denotestheformulafrom [22] (Equation(1),with

� �a and /!". �b), while SQRTis the“square-root” formula from
[19] (thesameasEquation (1), only without theRTO part).
Next, we plot the throughput that a maliciousreceiver can
achieve,according to theEquation(2), by manipulating
 ,� , andRTO (exactvaluesareshown in thefigure).

First, observe that by re-tuning
 to four, onecandou-
ble thethroughput (y-axis is in logarithmic scale),while re-
tuning � to 0.8 (Cc�d9��A9�) one can stealsomewhat less
bandwidth.More generally, according to Equation (2), set-
ting
 to a value largerthanone,enablesa flow to achieve
approximately e
 higher throughput as compared to a
well-behaved TCP flow andfor the samepacket lossrate.
Second, notice that the amount of stolenbandwidth (the
differencebetweenthe misbehaving andthe PFTK curve)
increasesas the packet loss ratio increasesin the caseof
theRTO parameter(e.g.,

 "!/. �-��9� ms).This is because
timeouts occur morefrequently in higherpacket-loss-ratio
environments,and thus,disobeying the exponentialback-
off rulesenablessignificant throughput gainsin suchenvi-
ronments.Furthermore,by re-tuningall parameterstogether
(
f��g , �f�b��� h , "!/. ���i�j), themodel predictssignif-
icant stealingeffects,wherethe misbehaving flow utilizes
approximatelyten (for ? �k�i� �BA) to twenty (for ? �l���5)
timesmorebandwidth thanbehavingflows.Finally, observe
thattheSQRTformulasignificantlyoverestimatestheTCP-
friendly ratefor higherpacket lossratios(wheretheexpo-
nential backoffs play a key role), hence this formula is not
suitablefor detectionpurposes.

4. Network Solutions

Here we analyzeseveral state-of-the art network solu-
tions (bothcore-andedge-based)designed to detectmali-
ciousflows. Common to all solutionsis their fundamental
limitation to accurately detectsuchflows dueto their lack
of theknowledgeof theactualflows’ parameters.

4.1. Core-Router-BasedSolutions

4.1.1. RED-PD In [18], Mahajanet al. developRED-PD,
aschemethatusesthepacket drophistoryata routerto de-
tecthigh-bandwidth flows in timesof congestion, andpref-
erentially drop packets from theseflows. In order to de-
tecthigh-bandwidthflows,RED-PDsetsa targetbandwidth
above which a flow is identified as malicious.The target
bandwidth is definedasthebandwidth obtainedby a refer-
enceTCPflow with the target RTT (default is 40ms),and
the current drop ratemeasured at the output router queue.
The targetedbandwidth is computedusingthesquare-root
TCP-friendly formula. In otherwords,in theabsenceof per-
flow RTT measurements,RED-PD setsthe target RTT to
40ms as a bound for distinguishing in- vs. out-of-profile
flows.

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

	

RTT (ms)

misbehaving flow
fair share

Figure 5. RED-PD is unab le to detect a mali-
cious flo w

While RED-PD can protect the systemagainstcertain
misbehaviors, the lack of exact knowledge of the flow’s
RTT fundamentally limits its ability to detectsevereend-
point misbehaviors as demonstratedin Figure 5. We per-
form ns experimentswith nine flows sharing a RED-PD
router. We vary the round-trip timesof the flows from 20
to 350ms(asshown on thex-axis),andplot thebandwidth
of a single flow on the y-axis. When all flows are well-
behaved,thebandwidth shareis fair (thestraightline in the
figure). However, whenoneof theflows(whosenormalized
throughput is shown on y-axis) re-tunes
 to 25, it canpo-
tentially stealup to five timesmorebandwidth thanits fair
shareaccording to Equation(2).ObservethatRED-PDsuc-
cessfullylimits themalicious flow to its fair-share,but only
whentheRTT is lessthanor equalto 40ms(recallthatthis

is the RTT of the referenceflow). However, as the flows’
RTT increases,themaliciousflow is ableto stealmore and
more bandwidth, up to five times morethan its fair share
(themaximum for this scenario)whentheRTT is 350ms.

RED-PD’s limitations in detectingmisbehaving flows
aremoregeneral thanindicatedin theaboveexample.First,
it is important to noticethat a misbehaving flow cansteal
bandwidth not only in homogeneous-RTT scenarios as in
theabove experiments,but alsoin heterogeneous-RTT en-
vironments,sincetheamount of stolenbandwidth depends
on the RTT of a misbehaving flow. Second,while in this
paper we focuson receiver-driven transport protocols,ob-
serve that the above RED-PDlimitations apply equallyto
sender-basedTCPstacks.Another problem arisesfrom the
factthatRED-PDusesa simple(andlessaccurate)square-
root formula, which significantly overestimatesthe TCP-
friendly ratefor higherpacket lossratiosbecauseit doesn’t
account for retransmissions[22]. Hence,maliciousTCPor
RCPflows have theopportunity to stealdramatically more
bandwidthasthepacket lossratio increases,e.g.,100times
more when? �m�i� : , asindicatedin Figure4.

Finally, RED-PD’s inability to determinewith highcon-
fidence if aflow is maliciousor not,limits its ability to pun-
ish a malicious flow (e.g., to completely starve it). Hence,
“stealingpaysoff” for endpoints asthey canfreely re-tune
theirparameterswithout adverseeffects: (i) they will notbe
completelystarved; (ii) they will not utilize lessbandwidth
thana well-behaving TCPor RCPwould; andyet (iii) they
canquiteoftenstealsignificant amounts of bandwidth.

4.1.2. Fair Queuing While it mayappearattractiveto ap-
ply someversionof fair queuing (including thepreferential-
dropping schemesdeveloped to enforce fairnessamong
adaptive andnon-adaptive flows, e.g.,Flow Random Early
Detection(FRED) [17], CHOKe [24], or StochasticFair
Blue (SFB) [8]) to solve the above problem, observe that
suchschemesare also unable to detectend-point misbe-
haviors and to enforce the proportional fairnesstargeted
by TCP. Moreover, in a heterogeneous RTT environment,
suchschemeswill significantly deviate from the propor-
tional bandwidth share,andeven magnify the bandwidth-
stealingeffects.Below, we provide a simple,yet illustra-
tive example.While not representative of anactualor real-
istic scenario, our main goal is to illustrate the difference
betweenproportional (RTT-dependent)andmax-min fair-
nessasenforcedby FQ.

Consider a link shared by three congestion-
controlled flows, such that the proportional fair share
is (0.9,0.05,0.05). Next, assumethat flow 2 is mali-
cious. It re-tunes its parameters and utilizes more band-
width by stealing from flow number one, such that
the bandwidth share is now (0.7, 0.25, 0.05). How-
ever, if FQ is used,all flows get their “f air-share”, andthe
bandwidth shareis now (0.33, 0.33, 0.33). Thus,FQ pro-

vides even more bandwidth to flow 2 than it could have
stolenwithout it.

4.2. Edge-Router-BasedSolutions

Here,we present two solutionswhosegoal is to detect
non-TCP-friendly behavior at the network edge.The key
advantageof anedge-basedvs.a network-basedschemeis
theopportunity to monitorpacketsin bothdirections (data
in forward, andack in reverse).

4.2.1. D-WARD In [21], Mirkovic et al. develop
D-WARD, anedge-routerbasedprotectionschemefor de-
tecting DoS activity. For eachtraffic type, they establish
a baselinetraffic model. For a TCP session,they mea-
surebothoutgoing (data) andincoming (ack) traffic andde-
fine the maximum allowable ratio of the two. When the
ratio of the number of datavs. the number of ack pack-
ets goesover a certain threshold, they conclude that the
flow is outof profileandrate-limit it.

While the above schememay indeed protect against
TCP-baseddenial-of-service attacks (where the sender
floods the network with data packets independent of
the feedback from the receiver), this model clearly
doesn’ t apply to the receiver-driven TCP scenario. Re-
call that in the receiver-basedscenario, the number of
requests and data packets is the same in both direc-
tions, even in the mostseveredenial-of-servicescenarios.
Moreover, the fact that the number of packets in the for-
ward (data) and reverse (req) directions is the sameis
actually the core idea of the request-floodattack: the re-
ceiver floods the senderwith requests, and the sender
replies by transmitting the samenumber of data pack-
ets,yetwith significantly largersizetherebycongestingthe
network.

4.2.2. Tcpanaly In [26], Paxsonpresentstcpanaly, a
toolwhoseinitial goalwastowork in onepassoverapacket
traceby recognizing genericTCPactions.Thegoalof exe-
cutingonly onepassstemmedfrom theobjectivethattcp-
analy might laterevolve into a tool thatcouldmonitor an
Internet link in real-timeanddetectmisbehaving TCPses-
sionson the link. Unfortunately, the authorwas forced to
abandonbothof thegoals. Amongmany obstacles,thekey
oneis thatone-passanalysisproveddifficult dueto vantage
point issues(seereference[26] for details),in which it was
oftenhardto tell whethera TCPflow’s actionsweredueto
themostrecentlyreceived packet,oronereceived in thedis-
tantpast.

5. An End-Point Solution

5.1. Sender-SideVerification

In order to detectreceiver misbehavior, the senderre-
quiresincreasedfunctionality beyond its role asa slave to
thereceiver’s requestpackets(seeFigure2). Our objective
is to addtheminimumfunctionality to thesenderthatwill
enable it to robustly detectreceiver misbehavior over long-
time scales(we treat the short-time-scalemisbehavior de-
tectionproblem in Section6.1), yet without anyhelp from
a potentially misbehaving receiver. While this new func-
tionality inevitably increasesthe sender-side implementa-
tion complexity, we will demonstratethat it representsa
generalsolutionto thebandwidth-stealingreceiver-induced
misbehaviors.

SND.NXT Send

sn end buffer

SEG.SEQ

SEG.REQ
SEG.DEQ

 Ping
Agent

PNG.SND

PNG.RCV

TFRC
Agent

Control
 Agent

RTT

Ploss

Measured Throughput

Computed
Throughput

Figure 6. Secure RCP sender

Figure6 depictsthekey componentsof sucha solution.
Equation (1) indicatesthat knowledgeof RTT andpacket
loss ratio is enough to compute the TCP-fair throughput,
andconsequently to detectout-of-profile flows. Unlike in
network-basedscenariosdiscussedin Section4, an end-
point schemecanmeasureRTT andthe packet loss ratio,
andhenceenforce a more precisetraffic profile than any
network-basedsolution.

Becausethe sendermustestimateRTT andpacket loss
ratio without any cooperation from the untrustedreceiver,
thesendertransmitspingpacketsthatthereceiver hasnoin-
centive to delay, asa largerRTT impliesa lowerbandwidth
profile.2 Likewise, the sendermust estimatethe packet
loss ratio and detectwhetherthe receiver is actually re-
requestingdata packets that are dropped. Observe that a
node performing a DoSattackneednot re-requestdropped
packets,whereasreceivers thatarestealingbandwidth will

2 If thereceiverdoesn’t reply to theping requests,thesendermayeither
disconnect it, or rate-limit it to a moderaterate.Moreover, to prevent
thereceiver to simplysendaresponsein anticipation of aping request
(thusthereby simulating asmaller RTT), thesendershouldrandomize
theperiod between theping messages.

beforced to re-requestpacketsfor a reliableservice.In any
case,onepossiblesolutionto theabove problem is for the
senderto purposelydropa packet to testif thereceiverwill
re-requestit as the absenceof a repeated request for the
droppedpacketwouldindicateapotentialDoSattack.Note
that this is a backward-compatible technique thatcouldbe
usedinsteadof theproposednonce technique[6]. Neverthe-
less,herewe focus on bandwidth-stealingscenarioswhere
thereceivers areforced to re-requestdroppedpacketsfor a
reliableservice.

Once the RCP senderestimatesRTT and the packet-
loss-ratio,it cancompute the TCP-friendly rate.However,
because theseparameters can vary significantly during a
flow’s lifetime, we apply the methods developedfor TCP-
Friendly RateControl (TFRC) [10] to estimatethe TCP-
friendly rate in real time. Namely, while existing use of
TFRC focuseson setting the transmissionrate basedon
RTT andlossmeasurements,weutilize TFRCto verifyTCP
friendlinessusing the actualRTT (measured via the ping
agent) andlossmeasurementsincurredby theRCPflow it-
self.

In [25], Pateletal. designedanend-pointschemewhose
goalis to verify TCPfriendlinessin thecontext of untrusted
mobile code.The key difference betweenour schemeand
theonefrom [25] is thatourschemeaimsto thwartpossible
receivermisbehaviors, andhencedoesnot require any co-
operation from a potentially maliciousreceiver. Moreover,
in contrast to the schemefrom [25], which compares the
TCP sendingrate to the TCP-friendlyequationrate [22],
ourschemeappliestheTFRCprotocol to estimatetheTCP-
friendly rate in real time. This is particularly important in
the presence of highly dynamic background traffic; while
beingan equation-basedscheme,TFRC managesto adapt
to relatively short time-scaleavailable-bandwidthfluctua-
tions[3].

Finally, by comparing the measuredthroughput (based
on the number of packets sent)and the throughput com-
putedby theTFRCagent, thecontrol agentis ableto detect,
andeventually punish, a misbehaving receiver. We do not
implement thecontrol module in this work, asour primary
goal is to explore theability of the above schemeto accu-
rately detectreceiver misbehaviors. Alternativesto punish
include rate-limiting and preferentially dropping packets.
However, given that the schemecanindeedaccurately de-
tectmisbehaving receivers(to beshown below), thesender
maysimply disconnect themisbehaving client, andin that
way discourage potentially malicious receivers from the
temptation to stealbandwidth.

5.2. DetectingMisbehaviors

5.2.1. TFRC Agent To robustly detectmisbehaving re-
ceivers, it is essentialto first evaluate the TFRC agent’s

accuracy in measuring TCPfriendliness.ComputedTFRC
throughput may deviate from actualTCP throughput due
to measurementerrors (low RTT samplingresolution, ping
packetssentonceper second, etc.),systemdynamics, and
inaccuraciesin theunderlyingTCPequation.Thus,to man-
agethedetectionscheme’s falsepositives(incorrectdecla-
rationof a non-malicious flow asmalicious), suchinaccu-
raciesmustbeincorporatedinto thedetectionprocess.

We conduct ns simulation experiments and con-
sidera link sharedby a number of TCPSackflows (varied
from 1 to 600).The link implements RED queuemanage-
ment and hascapacity10Mb/s; we set the buffer length,
min thresh, and max threshto 2.5, 0.25 and 1.25 times
the bandwidth-delay product, respectively. The round
trip time is 50ms. Unlessotherwise indicated,thesepa-
rameters are used throughout the paper. We perform a
number of simulations,and present average results to-
gether with 95%confidenceintervals.

To establisha baselineof TFRC’s behavior, we first
mount the TFRC agent on the senderside of a sender-
basedTCP Sack[11] flow andpresentthe resultsin Fig-
ure7. Thefigure depicts theratio of measured(TCPSack)
vs. computed(by the TFRC agent) throughputs asa func-
tion of the packet lossratio. Whenthe measuredvs. com-
puted throughput ratio is one,this indicatesthat theTFRC
agent exactly matchesthe TCP Sackthroughput. Observe
thatthis is indeedthecasefor low packet lossratios(for the
curve labeledas“TCP Sack”).As thepacket lossratio in-
creases,thecurve moderately increases,indicating a slight
conservatism of the TFRC agentas the throughput com-
puted by the TFRC agentis slightly lower than the mea-
suredTCPSackthroughput. Theproblem of TFRCconser-
vatismhasbeenstudiedin depthin reference[32]. In sum-
mary, thethroughput computedby theTFRCagentdeviates
from theTCPSackthroughput, yet thedeviation is moder-
ate,evenfor highpacket lossratios.

0.8

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15 0.2M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

TCP Sack
RCP Sack

Figure 7. TFRC agent mounted on the sender
side of a well-beha ved (a) TCP Sack and (b)
RCP Sack

Finally, we repeattheaboveexperiment,but now mount

theTFRCagenton theRCPsenderasin Figure6. Observe
that the ratio of the measured (RCP Sack)vs. computed
throughput is somewhat higher than in the above sender-
basedTCP Sackscenario.Indeed, RCP Sackhasan im-
provedlossrecovery mechanism(seereference[14] for de-
tails)andconsequentlyimprovesthroughput.Thekey prob-
lem is the senderside’s difficulty in determining whether
thereceiver is trying to optimizeits performance,or is sim-
ply stealingbandwidth. We treat this problem in detail in
Section5.3.Here,we obtainedthereferencemeasurement-
basedprofile for a behaving RCPflow, which we will next
useto demonstratethecapabilityof anend-pointschemeto
detectevenmoderatereceivermisbehaviors.

5.2.2. Detecting Misbehaving Receivers Here, we im-
plement a misbehaving RCPnodethat re-tunesits conges-
tion control parameters
 , � , andRTO at thereceiver.

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

Regular RCP Sack
alpha=4
alpha=9

alpha=16
alpha=25

Figure 8. Misbeha ving receiver re-tunes the
additive-increase parameter

Wefirst re-tunetheadditive-increaseparameter
 andre-
peatthe experiment above. Figure8 depictsthe measured
vs. computed throughput ratio for misbehaving receivers
(having
 of 4, 9, 16 and25), togetherwith the samera-
tio for thebehaving RCPflow having
��a . Recallthatthe
left-mostpointonthecurvecorrespondsto low lossandex-
perimentsin which the RCP flow competeswith a single
TCP Sackflow, whereasthe right-most point on thecurve
correspondsto high loss and a single RCP flow compet-
ing with 600 TCP Sackflows. Observe first that the mea-
suredvs.computedthroughputratiosfor misbehaving flows
clearly differ from the behaving flows’ profile, indicating
a strongpotentialfor misbehavior detection(to bedemon-
stratedbelow). Second,observethatthethroughput ratiofor
misbehaving flows is approximatelyproportional to e
 as
predicted by the modelexceptfor extremely low aggrega-
tion regimes (e.g., ? �o��� �9: in which a singleRCP flow
competeswith asingleTCPSackflow). In suchlow aggre-
gation cases,while themisbehaving flow indeedtakessig-
nificantly more bandwidth than the competing TCP Sack
flow (not shown), it is unable to fully utilize thebandwidth
dueto frequentbackoffs.

Next, we explore misbehaviors that re-tune the
multiplicative-decreaseparameter � and the retransmis-
sion timeout parameter RTO. Due to spaceconstraints,
we skip the resultsandpoint an interestedreaderto refer-
ence[16]. The most interestingresult is certainly the one
showing thatby retuning theminRTO andmaxRTO param-
eterssimultaneously, it is possibleto transform RCP (and
TCP)into a powerful DoStool.

5.2.3. Detection Thr eshold Here we evaluate the
sender’s ability to detectreceiver misbehaviors andstudy
the false-alarm probability and correct misbehavior-
detection probability. Denotemeasthr as the throughput
measuredby theRCPsender, andcompthr asthethrough-
put computed by the TFRC agent (as shown in Figure
6). Next, denote k as the thresholdparameter, and de-
fine p 6rq = as

p 6sq = �mputEv � 6xwzyF{_| }N~ t� v w ? }N~ t �
q = � (3)

For example, p 6 = denotestheprobability thatthemea-
suredvs. computed throughput ratio is larger than one,
whereas p 6 A = is the probability that the the measured
throughput is more thantwice thecomputedone. If there-
ceiver is behaving, then p 6rq = is the false-alarmproba-
bility (i.e., we falsely conclude that the receiver is mis-
behaving with probability p 6rq =). On the other hand,
if the receiver is misbehaving, then p 6rq = is the cor-
rect misbehavior-detectionprobability (i.e., we correctly
conclude that the receiver is misbehaving with probabil-
ity p 6rq =).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

P
ro

ba
bi

lit
y�

Threshold (k)

False Alarm Prob. (RCP Sack)
Corr. Misb.-Det. Prob. (alpha=4)

Corr. Misb.-Det. Prob. (beta=0.7)
Corr. Misb.-Det. Prob. (maxRTO=0.5)

Figure 9. Detecting out- of-pr ofile flo ws

Figure 9 plots the falsealarm probability (for the be-
having RCP flow), togetherwith the correctmisbehavior-
detectionprobabilitiesfor threemoderatelymisbehaving re-
ceivers (exact parametersareshown in the figure). We set
thepacketlossratioto0.15representing ascenarioin which
the throughput ratio deviates(approximately) the most as
indicatedin Figure7. Consequently, thefalse-alarmproba-
bility for the behaving RCPflow is largest,indicatingthat

this scenariois the most challenging from the detection
point of view.

Thekey observationsfrom Figure9 areasfollows.First,
notethe tradeoff in settingthe threshold parameterk. If it
is too small (e.g.,

q �k), we areableto detectthemisbe-
having receivers with high probability, but the falsealarm
probability is alsoone.On the otherhand,if it is set too
high(e.g.,

q ��:), thefalsealarmprobability becomeszero,
but the correct misbehavior-detection probability also be-
comeszero.However, observe that the fact that the false-
alarmprobability decreasesfaster(for smallerk), makesit
possibleto setthethreshold (e.g.,

q �a�� h in thisscenario),
suchthatthefalsepositivesareacceptably small,yetweare
ableto detectall of theabove cheaterswith high probabil-
ity. Thus, this worst-casescenarioconfirms thehigh preci-
sionof theend-pointschemein detectingawiderangeof re-
ceiver misbehaviors. However, we will next show that set-
ting the parameterk incurs an additional challengewhen
confrontedwith versionsof TCP employing performance
enhancements.

5.3. AdvancedCongestion Control Mechanisms

Thereis a significantbodyof work proposedto improve
theTCPperformancein wirelessenvironments,wherehigh
channel lossesmay disproportionately degradeTCP Sack
performance.Here,webriefly explain two well-known pro-
tocols,TCP-ELN [2] and TCP Westwood [4]. TCP-ELN
hasbeenproposedto distinguishwirelessrandom losses
from congestionlosses.It relies on an external trigger to
classify the losses,andfast retransmitslost segments due
to wirelesserrors without decreasingdown the congestion
window. It hasbeenshown in [14] that whenthis mecha-
nismis appliedin thereceiver-drivenprotocol scenario, the
throughput improvements are quite significant (we repeat
thisexperimentandconfirmtheresultbelow). Another pro-
tocol thatsignificantlyimprovesthe throughput over wire-
less links is TCP Westwood (seedetails in [4]), and it is
expectedthat the samemechanism could provide further
throughput improvements in receiver-drivenprotocols.Be-
low, we focus on RCP-ELN and do not further consider
sender- or receiver-basedTCPWestwood.

We first simulateanRCP-ELNflow in a lossywireless-
like environment. Figure10 depictsthemeasuredvs. com-
putedthroughput ratioasafunctionof loss.Observethatthe
RCP-ELNthroughput ratio increasessignificantlyascom-
paredto the RCP Sackprofile, indicating that RCP-ELN
indeedsignificantly improvesthroughput, e.g.,achieving a
six-fold increasefor a lossratio of 0.17. However, thekey
problemis that from thesenderperspective, theRCP-ELN
flow is difficult to distinguishfrom a misbehaving flow.

Figure11 depictsthe false-alarmprobability for thebe-
having RCP-ELNflow for a packet loss ratio of 0.15. To

0

1

2

3

4

5

6

7

0 0.05 0.1 0.15 0.2 0.25M
ea

s.
 v

s.
 C

om
p.

 T
hr

ou
gh

pu
t R

at
io

Loss Rate (p)

Regular RCP Sack
Regular RCP-ELN

Figure 10. RCP-ELN significantl y impr oves
thr oughpu t

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y�

Threshold (k)

False Alarm Prob. (RCP-ELN)
Corr. Misb.-Det. Prob. (alpha=25, beta=0.9)

Corr. Misb.-Det. Prob. (alpha=25)
Corr. Misb.-Det. Prob. (beta=0.9)

Figure 11. From the sender’ s perspective ,
RCP-ELN looks like a misbeha ving flo w

emphasizethe detectionproblem,we alsoplot the correct
misbehavior detectionprobabilities (without any advanced
congestioncontrol mechanisms),with maliciously re-tuned
parameters(i)
���A9� , (ii) �m�-��� � , and(iii)
���A9� and������� � . Observe thatusinga smallthreshold(e.g.,

q ��)
ensures a high detectionprobability for any of the above
misbehaviors, but we also falselydetectthe RCP-ELNas
malicious.However, simply increasing thethreshold k does
noteliminatetheproblem.For example, for

q ��g , thefalse
alarmprobability for ELN-RCPis still one,while theproba-
bility to detectmisbehaviors(i) and(ii) hasalreadydropped
to zero. Finally, by usinga very largek (e.g.,

q ��� in this
scenario), we have an acceptably small falsealarmproba-
bility for RCP-ELN,but areat thesametime unableto de-
tectany of the(quite severe)receivermisbehaviors.

Thus,theseexperimentsillustratea fundamentaltrade-
off betweensystemperformanceand security (the abil-
ity to detectbandwidth stealers),asboth cannot be maxi-
mizedsimultaneously. Ironically, while advancedconges-
tion control mechanisms at the receiver significantly im-
prove throughput,theresultingfalse-alarmprobability fur-
therincreases,furtheremphasizingthetradeoff. We believe
that setting the parameter k to a larger value strikes the
bestbalancefor the file- or streaming-servers in the Inter-
net. A large valueprotects servers from severedenial-of-
serviceattacks,while enabling innovation in protocol de-

sign by preserving the performance benefitsof receiver-
centrictransport protocols.Thedownsideis thefactthatwe
areunableto detectsomebandwidth stealers.In contrast,
strictly enforcing today’s TCP-Sackthroughput profile via
a lowerk wouldindeedmakeit possibleto catchevenmod-
estbandwidth stealers.However, a small k would remove
mostof theRCPbenefits,andindeedremove theincentive
for designinganddeploying enhancedTCPstacks.

6. Short Time ScaleMisbehavior

The secureRCP senderis designed to detectreceiver
manipulations of congestion control parameters (e.g.,
 ,� , RTO) thatwould enable the receiver to stealbandwidth
over longer timeperiods.Hence,thesemisbehaviorscanbe
detectedon longer time-scales.However, very short-lived
flows transmittingup to tens or hundreds of packets are
common in today’s Internet dueto web traffic. Below, we
treattheproblem of shorttime-scalemisbehaviors anddis-
cusspossiblesolutions.

6.1. Initial Congestion Window

We considerweb RCP flows that increase their initial
congestionwindow in order to obtaindecreasedresponse
time. The web-browsing simulationscenarioconsistsof a
pool of clients and a pool of web-servers,while the bot-
tlenecklink is 10Mbps. We adopt the model developedin
[7] in which clientsinitiate sessionsfrom randomly chosen
web sites(the server pool) with several web pagesdown-
loadedfrom eachsite. Eachpage consistsof several ob-
jects,whicharedownloadedby eitherTCPor RCP, depend-
ing on the client (all the servers in the pool support both
options).There is a singlemisbehaving client in theclient
pool, which usesa mis-configured RCP (detailsaregiven
below), while the other clients from the pool behave and
useunmodifiedTCPSack.

0

2

4

6

8

10

12

14

16

18

1 10 100 1000

R
at

io
 o

f R
es

po
ns

e
T

im
es

�

File Size (packets)

W1=100 vs. W2=2
W1=100 (RTO=0.1) vs. W2=2

W1=W2=2

Figure 12. A greed y receiver can significantl y
degrade legitimate backgr ound web traffic

While it may appear attractive for a maliciousclient to
maximally increasetheinitial window sizeparameterW in
order to stealmore and more bandwidth, this is not nec-
essarilya goodoption, especiallyin morecongestedenvi-
ronments.This is illustratedin Figure12,wherewe setthe
link utilization to 90%, and the malicious clientssetsthe
initial window sizeparameterW to 100packets.Here,this
greedy usersignificantlydegradesnot only thebackground
traffic (notshown),but alsodegradesits ownresponsetimes
(shown in thefigure)by anorderof magnitude.Thisdegra-
dationis dueto thefactthatwhenthemalicioususersends
large burstsof requests,it forces the web server to reply
with largeburstsof datapackets,many of which arethem-
selveslost in thecongestion.Thesepacketlossesforceeven
the RCP userto enterthe exponential backoff phaseand
degradesits responsetime. To overcomethe above prob-
lem, themalicious userneedsto “turn off ” theexponential
backoff timers.We do this by re-tuning the RTO parame-
ter to 100ms.In this way, themalicioususeris ablebothto
“push-out” andsignificantlydegrade the background traf-
fic, andat thesametimeimprove its own responsetimes,as
alsoshown in thefigure.

6.2. Solutions

Here, we explore two possiblesolutions to the above
short-time-scalemisbehaviors. The first is to rate-limit
flows, which while effective in thwarting cheaters, is a
non-work conserving solution in which it is problem-
atic to determinethe appropriate rate. The secondsolu-
tion is to have a “smart” RCP client at the senderside
that would enforce a “TCP-friendly” exponential win-
dow increase.It would estimatethe RTT to the client,
and releasethe data packets accordingly. While also ef-
fective in thwarting cheaters,this approach unfortunately
mitigatessomeof thebenefitsof RCP.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

R
es

po
ns

e
tim

e
(s

ec
)

File Size (packets)

Rcv. misbehaving - Snd. unprotected
Rcv. misbehaving - Snd. rate-limited

Rcv. well-behaving - Snd. unprotected

Figure 13. Protecting against shor t-time-
scale misbeha vior s

To study the performanceof the above solutions,we
compute and plot in Figure 13 the file-response times in

threedifferent scenarios for the RCP flow with the avail-
ablebandwidth of 10Mb/s andRTT of 50ms: (i) whena
malicioususersetstheinitial window W to 100packetsand
the senderdoesnot ratelimit (labeledas“Rcv. misbehav-
ing - Snd.unprotected”); (ii) thereceiver sets���a��9� , but
thesenderratelimits to 200kb/s(“Rcv. misbehaving - Snd.
rate-limited”) and(iii) the receiver is well behaving andis
not rate-limited(“Rcv. well-behaving - Snd.unprotected”).
Figure13illustratesproblemsin settingtherate-limitvalue.
Settingit to 200Kb/s degradesthefile responsetimessig-
nificantly, asshown in Figure13.

But the key insight from the above experiment is that
usinga large initial window sizescansignificantly (up to
ten timesin theabove scenario- andmuchmorein larger-
bandwidth networks) improve file response times. Such
methodologies have beenstudiedin depthin [23, 33, 34],
but in the context of sender-based TCP, where the web-
server increasestheinitial window sizein anattemptto im-
prove systemperformance.However, in thereceiver-driven
RCPscenario,it is hardto distinguishwhetherthereceiver
is jump-startingtheTCPflow or is simplymalicious.Thus,
applying rate limiting or the “smart” RCP client method-
ology may indeedprotect thesystemagainst receiver mis-
behavior, but at the sametime prevents attemptsas in
[23, 33, 34] to improve performance.This illustratesthe
tradeoff betweensystemsecurityandperformancein that
strict enforcementof protocol ruleswould not only reduce
performance,but wouldalsoinhibit protocol innovation.

However, eitherrate-limitingora“smart”RCPclienthas
to bestrictly applied,becauseareceiverwith anexcessively
largeW in combinationwith manipulatedexponentialback-
off timers can significantly degrade the legitimate back-
ground traffic (Figure12). Yet, applying any of the short-
time-scaleprotection methodologiesinevitably reducesthe
incentive for receivers to useRCPfor short-livedflows, as
sender-basedTCPenhancedwith jump-startingmethodolo-
gies is able to achieve the bestresponse-timecurve from
Figure13withoutany securityconsiderations.

7. Conclusions

Receiver-driven transport protocols delegate key con-
trol functions to receivers.While this radicallynew proto-
col designachievessignificantperformanceandfunction-
ality gains in a variety of wirelessandwireline scenarios,
we showed that a high concentration of control functions
availableat the receiver leadsto an extreme vulnerability.
Namely, receiverswouldhaveboththemeansandincentive
to tamper with the congestioncontrol algorithm for their
own benefits. We analyzeda setof easy-to-implement re-
ceivermisbehaviorsandanalytically quantifiedthesubstan-
tial benefitsthata malicious clientcanachieve.

We evaluateda setof state-of-the-artnetwork-basedso-
lutions, andproposedandanalyzeda setof end-point so-
lutions.Our findings areasfollows. (1) Network-basedso-
lutions are fundamentallylimited in their ability to detect
and punish even severe endpoint misbehaviors. (2) End-
point solutioncanaccuratelydetectlong-time-scalereceiver
misbehaviorsandstrictly enforcetheTCP-friendlyrate,but
suchenforcemententirelyremovestheperformancebenefits
of receiver-driven protocols.(3) In thefile- andstreaming-
server scenarios, it is possibleto strike an acceptablebal-
ancebetweenprotocol performance on onehand,andvul-
nerability to misbehavers on the other, due to the fact
that moderatebandwidth stealersdo not representa criti-
cal threatto thesystemsecurity. (4) On thecontrary, short
time-scalereceiver misbehaviors can extremely degrade
the responsetimesof well-behaving clients in the HTTP-
server scenarios;hence,suchservershave to strictly apply
sender-basedshort-time-scaleprotectionmechanisms;un-
fortunately, suchmechanismscanoften limit the receiver-
drivenTCPperformanceto a level which is belowthelevel
achievableby sender-basedTCP.

References

[1] M. Allman,S.Floyd,andC.Partridge.IncreasingTCP’sini-
tial window, 1998. InternetRFC2414.

[2] H. BalakrishnanandR. Katz. Explicit lossnotificationand
wirelesswebperformance. In IEEEGLOBECOM, 1998.

[3] D. Bansal,H. Balakrishnan, S. Floyd, andS. Shenker. Dy-
namicbehavior of slowly-responsive congestioncontrol al-
gorithms.In ACM SIGCOMM, 2001.

[4] C. Casetti,M. Gerla,S.Mascolo,M. Sanadidi,andR.Wang.
TCP Westwood: Bandwidthestimationfor enhancedtrans-
port over wirelesslinks. In ACM MOBICOM, 2001.

[5] D. Clark, M. Lambert,and L. Zhang. NETBLT: A high
throughputtransportprotocol. In ACM SIGCOMM, 1987.

[6] D. Ely, N. Spring,D. Wetherall,S.Savage,andT. Anderson.
Robustcongestionsignaling.In IEEEICNP, 2001.

[7] A. Feldmann,A. C.Gilbert,P. Huang,andW. Willi nger. Dy-
namicsof IP traffic: A studyof theroleof variability andthe
impactof control. In ACM SIGCOMM, 1999.

[8] W. Feng,D. Kandlur, D. Saha,andK. Shin. Stochasticfair
BLUE: A queue management algorithmfor enforcingfair-
ness.In IEEEINFOCOM, 2001.

[9] S. Floyd. Highspeed TCP for large congestionwindows,
2003. Internetdraftdraft-ietf-tsvwg-highspeed-01.txt.

[10] S. Floyd, M. Handley, J. Padhye,andJ. Widmer. Equation-
basedcongestion control for unicastapplications. In ACM
SIGCOMM, 2000.

[11] S. Floyd, J. Madhavi, M. Mathis,andM. Podolsky. An ex-
tensionto theselectiveacknowledgement(SACK) optionfor
TCP,2000. InternetRFC2883.

[12] R.Gupta,M. Chen,S.McCanne,andJ.Walrand.A receiver-
driventransportprotocol for theweb. In INFORMS, 2000.

[13] M. Handley, J. Padhye,S. Floyd, and J. Widmer. TCP
friendly ratecontrol,2001. IETF Internetdraft.

[14] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivakumar. A
receiver-centrictransportprotocolfor mobilehostswith het-
erogeneouswirelessinterfaces.In ACM MOBICOM, 2003.

[15] C.Jin,D. Wei,andS.Low. FAST TCP:Motivation,architec-
ture,algorithms,performance. In IEEEINFOCOM, 2004.

[16] A. Kuzmanovic and E. Knightly. A performancevs. trust
perspective in the designof end-point congestion control
protocols(extendedversion).Technical Report, 2004.

[17] D. Lin andR. Morris. Dynamicsof RandomEarly Detec-
tion. In ACM SIGCOMM, 1997.

[18] R. Mahajan, S. Floyd, andD. Wetherall. Controlling high-
bandwidthflows at the congestedrouter. In IEEE ICNP,
2001.

[19] M. Mathis, J. Semke, J. Madhavi, andT. Ott. The macro-
scopic behavior of the TCP congestion avoidance. ACM
ComputerComm.Review, 27(3):67–82, 1997.

[20] P. Mehra,A. Zakhor, andC. Vleeschouwer. Receiver-driven
bandwidthsharingfor TCP. In IEEEINFOCOM, 2003.

[21] J. Mirkovic, G. Prier, andP. Reiher. AttackingDDoSat the
source.In IEEEICNP, 2002.

[22] J. Padhye,V. Firoiu, D. Towsley, andJ. Kurose. Modeling
TCP Renoperformance:A simplemodeland its empirical
validation. IEEE/ACM ToN, 8(2):133–145,2000.

[23] V. Padmanabhan andR. Katz. TCPFastStart:A technique
for speeding up webtransfers.In IEEEGLOBECOM, 1998.

[24] R. Pain, B. Prabhakar, and K. Psounis. CHOKe, a state-
lessactivequeuemanagement schemefor approximatingfair
bandwidthallocation.In IEEEINFOCOM, 2000.

[25] P. Patel,A. Whitaker, D. Wetherall,J.Lepreau,andT. Stack.
Upgradingtransportprotocolswith untrustedmobile code.
In ACM SOSP, 2003.

[26] V. Paxson. Automatedpacket traceanalysisof TCPimple-
mentations.In ACM SIGCOMM, 1997.

[27] V. PaxsonandM. Allman. ComputingTCP’sretransmission
timer, 2000. InternetRFC2988.

[28] S.Savage,N. Cardwell,D. Wetherall,andT. Anderson. TCP
congestioncontrolwith a misbehaving receiver. ACM Com-
puterComm.Review, 29(5):71–78, 1999.

[29] P. Sinha,N. Venkitaraman,R. Sivakumar, andV. Bhargha-
van. WTCP: A reliabletransportprotocolfor wirelesswide-
areanetworks. In ACM MOBICOM, 1999.

[30] N. Spring, M. Chesire,M. Berryman, V. Sahasranaman,
T. Anderson,andB. Bershad.Receiver basedmanagement
of low bandwidthaccesslinks. In IEEEINFOCOM, 2000.

[31] V. TsaoussidisandC. Zhang. TCP-Real:Receiver-oriented
congestioncontrol. The Journal of ComputerNetworks,
40(4):477–497,2002.

[32] M. Vojnovic andJ.-Y. L. Boudec.On the long-runbehavior
of equation-based ratecontrol. In ACM SIGCOMM, 2002.

[33] R. Wang,G. Pau, K. Yamada,M. Sanadidi,andM. Gerla.
TCP start up performancein large bandwidth delay net-
works. In IEEEINFOCOM, 2004.

[34] Y. Zhang,L. Qiu, and S. Keshav. Speedingup short data
transfers:Theory, architecturalsupport, andsimulations.In
NOSSDAV, 2000.

