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ABSTRACT
Despite the fact that Explicit Congestion Notification (ECN) demon-
strated a clear potential to substantially improve networkperfor-
mance, recent network measurements reveal an extremely poor us-
ageof this option in today’s Internet. In this paper, we analyzethe
roots of this phenomenon and develop a set of novel incentives to
encourage network providers, end-hosts, and web servers toapply
ECN.

Initially, we examine a fundamental drawback of the currentECN
specification, and demonstrate that the absence of ECN indica-
tions in TCP control packets can dramatically hinder systemper-
formance. While security reasons primarily prevent the usage of
ECN bits in TCP SYN packets, we show that applying ECN to TCP
SYN ACK packets can significantly improve system performance
without introducing any novel security or stability side-effects. Our
network experiments on a cluster of web servers show a dramatic
performance improvement over the existing ECN specification:
throughput increases by more than 40%, while the average web
response-timesimultaneouslydecreases by nearly an order of mag-
nitude.

In light of the above finding, using large-scale simulations, mod-
eling, and network experiments, we re-investigate the relevance of
ECN, and provide a set of practical recommendations and insights:
(i) ECN systematicallyimproves the performance of all investi-
gated AQM schemes; contrary to common belief, this particularly
holds for RED. (ii) The impact of ECN is highest for web-only
traffic mixes such that even a generic AQM algorithm with ECN
support outperforms all non-ECN-enabled AQM schemes that we
investigated. (iii) Primarily due to moderate queuing levels, the su-
periority of ECN over other AQM mechanisms largely holds for
high-speed backbone routers, even in more general traffic scenar-
ios. (iv) End-hosts that apply ECN can exercise the above per-
formance benefits instantly, without waiting for the entireInternet
community to support the option.
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1. INTRODUCTION
For more than a decade, the networking research community

has invested enormous efforts in the development of Active Queue
Management (AQM) algorithms for the Internet, with the goalbe-
ing to allow network operators to simultaneously achieve high
throughput and low average delay. The key idea is to detect con-
gestion in its early stages and signal this information to the end-
points, before the router queue overflows. In such scenarios, AQM
algorithms are not forced to drop packets in order to implicitly no-
tify endpoints about the congestion; instead, they can markpackets
and sendexplicit congestion notifications to the endpoints. Such
explicit indications enable much smoother end-point control [12],
which in turn significantly improves system performance [12, 23].
Similar efforts are being undertaken to make both routers and end-
points in the Internet ECN-capable [30, 31].

Despite the above efforts, recent network measurements reveal
an extremely poorusageof ECN. For example, experiments on
over 84,000 web servers in the Internet indicate that in the year
2000, only 1.1% of the servers were ECN-capable [28], while this
fraction increased to only 2.1% in 2004 [27]. More interestingly,
measurements from [27] reveal that in experiments with ECN-
enabled servers,not a single packetwas marked by intermediate
routers. This indirectly indicates that the percentage of routers that
apply ECN-enabled AQM is probably even smaller than the above
percentage of ECN-enabled web servers.

The causes of the above phenomenon are diverse. On one hand,
deploying any change in a large scale system such as the Internet is
a non-trivial engineering task. One of the reasons for the small
fraction of ECN-enabled endpoints is the existence of “broken”
firewalls and load-balancers in the current Internet, whichincor-
rectly send a reset in response to a TCP SYN packet that uses ECN
flags in the TCP header. While this problem has been addressed
[14] and the defect has been gradually removed, this initialstress
significantly reduced the ECN deployment rate because endpoints
were reluctant to apply it.

On the other hand, the reasons for the small usage of AQM and
ECN in the Internet routers are more serious. Despite numerous
theoretical and empirical indications that AQM can indeed simul-
taneously improve network throughout and bound queuing delay,
questions, doubts, and counter-opinions are still being expressed:



(i) Why should I drop packets when my buffers are not full [26]?;
(ii) static AQM parameters cannot handle dynamic network traf-
fic [26]; (iii) setting AQM parameters is tedious, particularly for
web traffic [10]; (iv) ECN can improve performance of some AQM
schemes, but not others [23]; etc. Although some of the above
issues are addressed here and elsewhere [15], network providers
apparently are waiting for a more uniform and stronger signal from
the research community before applying any change.

In this paper, we develop a set of novel incentives for network
endpoints, both web-clients and servers, to apply ECN; in addition,
we develop novel incentives for network providers to apply ECN-
enabled AQM schemes. We show that ECN isnot an obstacle for
AQM deployment, as suggested in [24]; moreover, the key hypoth-
esis of our work is that ECN should be used as the driving forcefor
AQM deployment.

In Section 2, we provide the necessary background on ECN.
Next, in Section 3, we point out a fundamental drawback of the
current ECN specification which drops TCP control packets inmo-
ments of congestion; we argue that marking TCP SYN ACK pack-
ets at congested routers can significantly improve the system per-
formance without inducing any novel security or stability chal-
lenges. Section 4 evaluates the impact of this innovation onthe
performance of several AQM schemes in a web-browsing environ-
ment. In Section 5, we develop a simple queuing model to explain
the observed system behavior. Section 6 evaluates ECN’s incre-
mental deployability, while Section 7 presents a set of experiments
conducted on a cluster of web servers. We discuss related work in
Section 8. Finally, in Section 9, we conclude.

2. BACKGROUND
Explicit Congestion Notification is inherently coupled with the

idea of Active Queue Management. The primary goal of AQM
algorithms, which we discuss in more detail below, is to allow net-
work operators simultaneously to achieve high throughput and low
average delay by detecting incipient congestion. This is achieved
by sending appropriate indications to the endpoints beforethe queue
overflows. However, the method of informing sources of conges-
tion is not limited to dropping packets, as is the case with non-
AQM-enabled FIFO queues. Instead, AQM-enabled routers can
markpackets during congestion by setting the ECN bit in the pack-
ets’ header, as originally proposed for the DECbit scheme [32].
The actual number and choice of packets that are marked during
congestion depends on a particular AQM policy. The recommen-
dations for TCP’s response to ECN are initially proposed in [12],
and additionally refined in [30, 31].

2.1 Negotiating ECN capabilities
Before any ECN-enabled data exchange can take place between

two endpoints, they first have to successfullynegotiatethe use of
ECN. ECN negotiation happens during the TCP connection setup
phase. The ECN-related bits are (i) ECN-Capable (ECT) and (ii)
Congestion Experienced (ECN/CE) bits in the IP header, and (iii)
ECN-Echo bit in the TCP header.1 We illustrate the negotiation
procedure in Figure 1 using an HTTP file download example, which
we extensively exploit later in the paper. The client first sets the
ECN-Echo bit in the TCP header of a TCP SYN packet and sends
this packet to the receiver. For a SYN packet, the ECN-Echo bit is
definednot as a return indication of congestion, but instead as an
indication that the sending TCP is ECN-capable [13]. Upon receiv-

1Another TCP header’s ECN-related bit, Congestion Window Re-
duced (CWR), is not essential for our discussion here. See RFC
3168 [31] for more details.
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Figure 1: Negotiating ECN capabilities

ing the TCP SYN packet, the server sets the ECN-Echo bit in the
SYN-ACK packet’s TCP header, and sends this packet back to the
client.

When the client receives the above SYN ACK packet, the ECN
capability is negotiated, and both endpoints start an ECN-capable
transport by setting the ECT field in theIP headerof data packets.
In our particular scenario, the client sets the ECT bit when it sends
the HTTP request. Likewise, the HTTP server also sets the ECT
bit in the TCP data packet headers, when the requested file is sent
to the client. In moments of congestion, which we assume hap-
pen in the direction from the server to the client, the ECN-enabled
router marks ECT-enabled packets by setting the ECN/CE bit in
the IP header, as illustrated in the figure. When such packetsreach
the client, the client sets the ECN-Echo bit in the TCP headerof
the corresponding ACK packet thus signaling to the server that the
incoming data packet has experienced congestion.

3. ECN+: ADDING ECN TO TCP’S CON-
TROL PACKETS

While the current ECN specification enables congested routers to
mark TCPdatapackets during congestion, this is not the case with
TCP control (TCP SYN and SYN ACK) packets. This is simply
because these packets are used initially to negotiate the use of ECN
options between the two endpoints. Below, we first elaborateon the
devastating effects that this can have on system performance, par-
ticularly in AQM-enabled environments dominated by web-traffic.
Then we explore possibilities of using ECN bits in the IP headers
of TCP control packets. We demonstrate that marking (instead of
dropping) TCP SYN ACK packets, while leaving the treatment of
the initial TCP SYN packet unchanged from current practice,can
only improve performance without causing a threat for system se-
curity or stability.

3.1 The Problem of TCP’s “Admission Con-
trol”

Assume the scenario from Figure 1. When the client sends a
TCP SYN packet, it sets a retransmission timeout timer to an ini-
tial value of 3 seconds [29]. If the client receives a SYN ACK
packet before the timer expires, it sends the acknowledgement to



the server, typically piggybacking some data (a HTTP request in
our scenario) with the acknowledgement. However, if the SYN
ACK packet does not return (either because the TCP SYN packet
is lost on the forward path, or the SYN ACK packet is lost on the
reverse path) before the timer expires, the client doubles the retrans-
mission timeout value and re-sends the TCP SYN packet. Once a
SYN ACK packet is received at the client side, the connectionis
assumed to be successfully “admitted” into the system.

Consider first a non-AQM-based FIFO queue at the router. The
key problem is that a packet loss alone is an extremely unreli-
able indication that the flow should not be “admitted” into the net-
work. TCP flows are greedy and tend to utilize all possible avail-
able bandwidth. Thus, even a small number of “admitted” greedy
TCP flows can create an environment with a high packet loss prob-
ability. Yet, this doesnot mean that another TCP flow cannot
be admitted into the system. Moreover, TCP’s additive-increase
multiplicative-decrease (AIMD) mechanism enables all flows to
utilize their proportional fair share of bandwidth once they are
present in the system. However, in the absence of any explicit noti-
fication from the network, a TCP endpoint has no other option but
to wait for the retransmission timer to expire, and to then re-send
the TCP SYN packet.

The above problem is even more serious when the congested
router applies an AQM algorithm, as we demonstrate later in the
paper. This is because AQM schemes employ mechanisms that
drop packetsbeforethe queue size reaches the queue limit. While
such mechanisms can have remarkable impact and can significantly
improve system throughput by controlling behavior of already ad-
mitted flows [8, 16, 19, 21], they can produce devastating effects
in scenarios where flows dynamically arrive and depart from the
system at a high rate. This happens because the percentage ofthe
traffic that is made up of SYN ACK packets from the server to
the clients can be quite high. Not surprisingly, it has been experi-
mentally shown that for links carrying only web traffic, AQM (e.g.,
RED) provides no clear advantage over drop-tail FIFO for end-user
response times [10].

Unfortunately, the problem is not mitigated by ECN because
ECN is not used in IP headers of TCP SYN or SYN ACK pack-
ets. Therefore, in moments of congestion, an ECN-enabled router
dropsTCP SYN and SYN ACK packets because the ECN option is
not yet negotiated between the endpoints. Surprisingly, wedemon-
strate later in the paper that the corresponding performance degra-
dation can be even worse when the AQM scheme is ECN-enabled.
Below, we explore possibilities of applying ECN bits in the IP
headers of TCP control packets.

3.2 Marking TCP Control Packets
The TCP “admission control” problem can potentially be allevi-

ated by allowing endpoints to set the ECT bit in the IP headersof
TCP SYN or SYN ACK packets. That would enable ECN-based
AQM schemes at routers to mark TCP control packets. However,
such an approach raises several concerns that we discuss below.

There are several reasons why the ECT field shouldnot be set in
TCP SYN packets. First, as indicated in [13], there are no guaran-
tees that the other endpoint (web server in our scenario) is ECN-
capable, or that it would be able to understand and react if the
ECN/CE bits were set by a congested router. Second, the ECT
field in TCP SYN packets may be misused by malicious clients
to improve the well-known TCP SYN attack, where the goal is to
congest the web server’s listen queue by sending a large number of
TCP SYN packets. By setting the ECT bit in TCP SYN packet’s
headers, a malicious client would be able to easily inject a large
number of TCP SYN packets through a potentially congested ECN-

enabled router. Luckily, in typical client-server scenarios (e.g., web
traffic example from Figure 1), congestion is much more likely to
happen in the direction of the server to the clients. Thus, setting
ECT bits in TCP SYN packets is not justified from the performance
point of view.

There are just as many reasons to set the ECT fields in SYN
ACK packets. Refer again to Figure 1. First, when the web server
receives a TCP SYN packet with the ECN-Echo bit set, it indicates
that the client is ECN-capable. Hence, if the server is also ECN-
capable, there are no obstacles to immediately applying ECN, and
setting the ECT bit in the SYN ACK packet. Second, setting the
ECT bit in SYN ACK packets does not raisenovel security vul-
nerabilities. For example, provoking web servers or hosts to send
SYN ACK packets to third parties in order to perform a ”SYN
ACK flood” attack would be greatly inefficient. This is because
the third parties would immediately drop such packets, since they
would know that they didn’t generate the TCP SYN packets in the
first place. Moreover, such attacks would have the same signatures
as the existing TCP SYN attacks. Also, provoking web serversor
hosts to reply with SYN ACK packets in order to congest a certain
link would also be highly inefficient because SYN ACK packets
are small in size. Such attacks would be severalorders of magni-
tudeweaker than the existing ICMP echo-reply DoS attacks. Fi-
nally, because the congestion is likely to happen in the server-to-
client direction, setting the ECT bit in SYN ACK packets can have
a tremendous impact on performance, as we indeed demonstrate
below.

3.2.1 Reacting to ECN Signals in TCP Control Pack-
ets

The TCP sender should immediately send an HTTP request upon
receiving a SYN ACK packet, despite the state of the ECN/CE bit.
As discussed above, the fundamental reason is that the existence
of a congestion notification isnot a valid indication that the flow
should not be “admitted” into the system; that is only anecessity
when packet losses are used to convey the network state. Below,
we argue that such behavior does not introduce any threat to system
stability.

There are three reasons why the above behavior willnot cause a
congestion collapse. First, if the network is indeed congested, the
first data packet will re-experience congestion at the router, which
will set the ECN/CE bit in the first TCP DATA packet. This will
force the web client to set the ECN-Echo bit in the corresponding
TCP ACK packet, which will further cause the web server to ini-
tially wait for a timeout of 3 seconds before re-sending the packet,2

and even longer if the congestion persists. Thus, the exponential
backoff mechanism, which is necessary to protect network stabil-
ity, is still in place. Second, AQM algorithms are able to control
extremely large flow aggregates (e.g., [19]). Third, we demonstrate
in Section 7 that even in an extremely heavily congested scenario
caused by short-lived flows, the above approach only improves the
performance without causing any stability side effects.

Finally, to distinguish the existing ECN specification fromthe
addition proposed here, we name the above scheme ECN+. In sum-
mary, while the current ECN specification enables routers tomark
data packets, ECN+, when enabled at servers, extends this feature
to TCP SYN ACK packets. We evaluate both schemes below.

2Because this can cause similar performance degradations aswhen
a SYN ACK packet is lost, RFC 2414 [6] proposes an increase of
the initial window size to 2 packets in order to alleviate theabove
problem: if at least one of the packets returns to the sender,the
connection will not suffer the 3 second -long timeout penalty.



4. THE IMPACT OF ECN + ON AQM PER-
FORMANCE

4.1 AQM Algorithms
While ECN+ is a generic extension to ECN that should improve

the performance ofall ECN-enabled AQM schemes, we necessar-
ily limit our performance evaluation to a subset of AQM schemes.
In particular, we evaluate the impact of ECN+ on Random Early
Detection (RED) [15], Random Exponential Marking (REM) [8],
and Proportional Integrator (PI) [19].

RED uses a weighted-average queue size as a measure of conges-
tion, and the drop (mark) rate depends on minimum and maximum
threshold parameters (denoted asminth andmaxth, respectively),
as follows: when the weighted average is smaller thanminth, no
packets are marked or dropped. When the average queue lengthis
betweenminth andmaxth, the probability of marking or dropping
packets varies linearly between 0 and a maximum drop probability
(typically set to 0.1). If the average queue length exceedsmaxth,
all packets are marked or dropped. Reference [15] defines further
refinements of the scheme.

Of particular importance is the way RED behaves when the av-
erage queue length exceedsmaxth. The original RED paper [16]
recommends marking these packets when ECN is enabled, while
RFC 3168 [31] recommends dropping packets in these scenarios,
even if they are ECN-enabled. The latter rule, which we analyze
in more detail below, is motivated by a need to more efficiently
deal with non-responsive flows that ignore congestion indications.
Interestingly, we discover that both of the above implementations
are represented in today’s Internet. For example, Linux machines,
which we use in our testbed experiments in Section 7,mark, by de-
fault, all packets when the average queue length exceedsmaxth.
Some other vendors follow the RFC 3168 recommendation more
closely, at least according to the publicly available specifications of
their equipment.3 Because the issue of marking vs. dropping pack-
ets beyondmaxth impacts the system performance in a non-trivial
manner, we evaluate both versions below.

REM and PI apply control theoretic principles when deciding
which packets to drop or mark. Both schemes measure the dif-
ference between the targeted and measured queue lengths, and in-
crease or decrease the marking or dropping probability according
to a particular control function (see references [8, 19] fordetails).
The parameters used to set the control algorithm’s targetedobjec-
tive arequeue reference(qref ) in PI’s case, andtarget queue length
(b∗) in REM’s.

4.2 Experimental Methodology
Next, we conduct a large number of large-scale ns-2 simulations.

We adopt the model developed in [11], and combine it with the em-
pirical file-size distribution reported in [33]. In this model, clients
initiate sessions from randomly chosen web sites with several web
pages downloaded from each web site. Each web page contains
several objects, each of which requires a TCP connection forde-
livery. We explore the effects of persistent HTTP connections in
Section 7. The inter-page time distribution is Pareto, while we gen-
erate web file sizes by fitting the empirically-measured heavy-tailed
distribution reported in [23, 33]. While the majority of theflows
are very short, such that the mean file size is 7.2 kBytes, Gbytes file
sizes will also be generated such that the top 15% of object sizes ap-
proximately accounts for 80% of the bytes sent by servers [33]. Ac-
cording to [23], the combination of heavy-tailed user “think times”

3Detailed information about implementation and deploymentof
ECN is available athttp://www.icir.org/floyd/ecn.html.

and the above file-size distribution creates long-range dependant
(LRD) traffic with a Hurst parameter between 0.8 and 0.9. We uni-
formly distribute the flow round-trip times in the range from10 ms
to 150 ms.

Our simulation scenario consists of a web-client and a web-server
pool that are interconnected by a pair of routers and a bottleneck
link. Each node from the client pool connects to a router R1 with
a 1 Gbps link; likewise, each node from the server pool connects
to another router, R2, via a 1 Gbps link. Nodes R1 and R2 are
connected by a link whose capacity we change from 100 Mbps to
1 Gbps. We adopt the experimental method of [23], and proceedin
two steps. First, we set the capacity between R1 and R2 to 1 Gbps,
and vary the number of active web sessions in the system. In this
way, we place a nominal offered load on an uncongested link, in the
direction from R2 to R1. We generate offered loads in the range
from 80 Mbps to 105 Mbps, and we explain the reasons for such
a choice below. The web response times measured in this uncon-
gested environment represent the ideal system behavior, which we
later use to evaluate the performance of various AQM schemesin
congested environments.

Second, we reduce the R1-R2 capacity to 100 Mbps and re-run
the above web-request traces with the goal to evaluate the per-
formance of a particular AQM scheme implemented at R2. As
experimentally evaluated in [23], and as we analytically show in
Section 5, AQM schemes impact performance when the utiliza-
tion exceeds 80%; hence, we explore such congestion levels.Due
to space constraints, we report the results only for 90 Mbps and
105 Mbps. In the rest of the paper, we refer to the 90 Mbps load on
a 100 Mbps link as thelightly congested scenario, whereas we refer
to the 105 Mbps case as thepersistentlycongested scenario.

We set the AQM parameters as follows. For RED, we set the
RED’s targeted delayparameter to 5 ms, and let the algorithm from
[15] automatically set all other parameters. For REM and PI,we
setb∗ andqref to 62 kBytes, which corresponds to the same tar-
geted queuing delay of 5 ms, on a 100 Mbps link. The performance
measures of interest are end-to-end response times for eachre-
quest/response pair, and throughput on the bottleneck link. For a
given file, we compute its response time from the moment when
the first request for the file is sent to the server, until that file is
successfully downloaded by the client. We report the cumulative
distribution function (CDF),F (x) = Pr[X ≤ x], of response
times up to 2 seconds.

4.3 Response Times

4.3.1 RED and RED*
Here, we evaluate the impact of ECN+ on two versions of RED.

The first is the version in which all packets are dropped when the
average queue length exceedsmaxth, which we denote below as
RED. The second version is the one in which all packets are marked
in such scenarios, which we denote as RED∗.

Figure 2 depicts the CDF response-time profiles for RED without
ECN, with ECN, and with ECN+, when the offered load is set to
90% and 105%. As expected, the uncongested network scenario
(1 Gbps link between R1 and R2) has the best response-time profile,
since the percentage of successfully-transmitted files (the y-axis in
Figure 2) is the largest for all given response times (the x-axis in
the figure). Another expected result is that for any given scheme,
the profile for 90% load is better than the corresponding profile
for 105% simply because the congestion is more persistent inthe
latter scenario. Finally, as previously reported in [23], ECN alone
provides a small improvement to the non-ECN scenario. Below, we
argue that this is a direct consequence of RFC 3186’s rule to drop
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Figure 2: RED performance

all packets when the average queue length exceedsmaxth.
The key insights from Figure 2 are the following. First, notethat

ECN+ indeed significantly improves the performance of RED. This
is because the SYN ACK packets are marked in the ECN+ case,
and not dropped, as in the ECN case. Thus, a number of unnec-
essary timeouts are avoided, and the performance improvements
are evident in the figure, both for 90% and 105% loads. How-
ever, because all packets, including SYN ACKs, aredroppedwhen
the RED’s average queue length exceedsmaxth, this significantly
worsens the RED’s response-time profile.

RFC 3168 motivates this rule with a need to more efficiently
deal with non-responsive flows that are ignoring congestionindica-
tions. However, droppingall packets beyondmaxth cannot protect
against non-responsive flows. Instead, it can actually aid apoten-
tially malicious user. This is because the proposed rule degrades
all flows that share the bottleneck, not just the non-responsiveones.
More sophisticated mechanisms, such as the one proposed in [25],
are needed to first detect non-responsive flows, and then droppack-
ets exclusively from these flows.
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Figure 3: RED∗ performance

Figure 3 depicts the performance of RED∗ in the same simula-
tion scenarios as above. The most stunning result is certainly the
hugedegradationof response times in scenarios with ECN (when
TCP data packets are ECN-capable, but SYN ACKs are not). For
example, for 90% load, the figure shows that approximately only
30% of the flows have response times less than 0.5 sec. This is a

significant degradation from the scenario in which ECN is notused,
where nearly 75% flows have response times less than 0.5 sec. This
is due to the “TCP admission problem” discussed above; we pro-
vide additional insights below.

The only difference between the RED and RED∗ schemes is the
way in which packets are treated when the average queue length
exceedsmaxth: they are dropped by RED, and marked by RED∗.
Because data packets are marked by RED∗, TCP’s end-point con-
trol becomes less responsive [12], and RED∗’s operating point (av-
erage queuing length) moves closer to the upper thresholdmaxth.
While this can increase the throughput of ECN-enabled data pack-
ets, it can have a devastating effect on non-ECN-enabled SYNACK
packets that are being frequently generated by web servers in re-
sponse to client’s TCP SYN packets. Because SYN ACK pack-
ets are now much more frequently dropped, the timeout penalty
is invoked more often, and the degradation becomes huge. ECN+

solves this problem because web servers in this scenario send ECN-
enabled SYN ACK packets that are marked by the congested router.
Thus, ECN+ avoids the above degradation, and Figure 3 shows
that it significantly improves system performance when compared
to the scenario without ECN. Moreover, in the 90% load scenario,
RED∗’s profile with ECN+ comes very close to the idealized un-
congested profile.

4.3.2 REM and PI
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Figure 4: REM performance

Figures 4 and 5 show the impact of ECN+ on REM and PI,
in repeated scenarios from above. The key insight from Figure
4 is very low performance of REM without ECN support. How-
ever, note that ECN alone can significantly improve REM’s per-
formance, while the addition of ECN+ has variable impact. In
the 90% load scenario, ECN+ only marginally improves REM’s
performance with ECN, which indicates that REM’s marking is
quite conservative in lightly congested scenarios. We analyze such
scenarios in more depth in the following section. However, in
the 105% load scenario, the benefits of ECN+ become more pro-
nounced, and the appropriate delay characteristic remainsalmost
the same as when the congestion is not as persistent. Generally,
when the level of congestion increases, the benefits of ECN+ are
more pronounced. This result systematically holds for all schemes
explored in this paper. The key reason for this is that dropping SYN
ACK packets on persistently congested links can significantly de-
grade system performance; therefore, ensuring that those packets
are marked prevents the above degradation.

Figure 5 depicts the CDF response-time profiles with PI. While
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Figure 5: PI performance

ECN does improve the performance, note that the impact of ECN+

is even more profound. Moreover, for both levels of congestion, the
clients’ response times are very close to the uncongested scenario.
Because we treat PI in more detail in the following section, we now
turn our discussion to another important issue, the impact of ECN+

on throughput at the congested router.

4.4 Throughput
The primary objective of ECN+ is to address TCP’s “admis-

sion control” problem, where the loss of TCP control packetscan
severely impact the system performance in highly dynamic envi-
ronments. While the impact of ECN+ on end-to-end delay is in-
deed significant in the presence ofall AQM schemes, we demon-
strate below that the impact on throughput can also be surprisingly
high.

Table 1 summarizes the throughput results for ECN+ and ECN
for all AQM schemes. The improvements of ECN+ over ECN
are more moderate for PI, RED, and REM, where they vary from
1% to 5%. This is somewhat expected, because ECN+ impacts
mostly short-lived flows that in turn cannot impact throughput con-
siderably. Nevertheless, it is important to note that the impact
on throughput is systematically positive, which means thatECN+

does not improve the end-to-end response-time characteristic by
degrading throughput. Instead, ECN+ exploits opportunities thus
far unexploited by AQM schemes.

However, in the RED∗ scenario, the impact of ECN+ on through-
put becomes quite substantial, and ranges from 6%, in the light
congestion scenario, to 20% in the persistent one. The key rea-
sons for throughput degradation in the RED∗/ECN scenario are the
same as for the response-time degradation. In summary, because
TCPdatapackets are marked beyondmaxth, the RED∗’s operat-
ing point moves closer tomaxth, which further causes a significant
degradation for short flows as SYN ACK packets are often dropped.
Unfortunately, the same happens to larger flows that are forced to
wait a long time before being “admitted” into the network, which
causes significant throughput degradation.

4.5 Comparing Different Schemes
While the relationship among different schemes is beyond the

scope of this paper (see references [20, 23, 24] for more rigorous
comparisons of various AQM schemes, as well as FIFO), we do
it because the impact of ECN+, while systematically positive, is
non-uniform for the evaluated AQM schemes. Due to space con-
straints, we do not show the response-time comparisons for differ-

ent AQM schemes with ECN+ in a separate figure. In summary,
while PI has the best performance, the difference between PIand
other schemes is significantly reduced in the presence of ECN+.
Also, RED∗’s profile is almost identical to REM’s, while RED*
outperforms RED. This is because ECN+ improves RED∗’s per-
formance the most.

5. UNDERSTANDING ECN+

5.1 Decoupling ECN+ from AQM
ECN+ is inherently coupled with AQM. However, while the per-

formance of AQM schemes with and without ECN has been ex-
plored, and while the impact of ECN+ on AQM performance is
evidently positive, the question is: can ECN+ be decoupled from
AQM-specific mechanisms? In other words, our goal is to isolate
the impact of ECN+ from sophisticated mechanisms that define the
way packets are dropped or marked at the queue. Reasons for con-
ducting such evaluations are the following: (i) to emphasize the
importance of ECN+, (ii) to understand the impact of non-ECN-
related AQM mechanisms on end-to-end performance, and (iii) to
compare the impacts of the two in various scenarios.

To decouple ECN+ from specific AQM dropping/marking mech-
anisms we proceed as follows. We explore a simple threshold-
based AQM algorithm, which is defined as follows: when thetem-
poral queue length is smaller than a given queue threshold, no
packets are marked; whenever the queue length exceeds the thresh-
old, all packets are marked. This scheme intentionally lacks all
fundamental AQM mechanisms: first, it does not use theaveraged
queue length as an indication of congestion, which is neededto pro-
tect from prematurely sending congestion indications to the end-
points [16]; second, it has a sharp “step” marking function;there-
fore, it lacks any randomization properties and is prone to possi-
ble flow-synchronization effects that can cause significantthrough-
put degradations [16]; finally, the threshold scheme lacks sophisti-
cated control-theoretic mechanisms (e.g., the ones proposed in [8,
19]). However, the scheme uses ECN+, which initializes smooth
ECN-based endpoint control defined in [12], and enables marking
of SYN ACK packets. Thus, the system’s performance depends
solely upon these two mechanisms.

To isolate “classical” AQM mechanisms from ECN+, we com-
pare the above scheme against dropping PI. Dropping PI posseses
all the features that the above scheme lacks, yet PI in this scenario
lacks the support of ECN+. It is important to understand that we
neither suggest that PI should not use ECN+ nor that one should
apply the threshold scheme. Our goal is to evaluate the impact of
the two mechanisms. While necessarily not comprehensive, the ex-
periments and analysis below provide valuable insights that are of
practical importance.

5.2 Web Traffic Mixes

5.2.1 Lightly Congested Links
AQM algorithms are designed to control delay and throughput

in persistentlycongested scenarios by marking/dropping packets in
an effort to stabilize the queue length at a targeted level. However,
in lightly congested scenarios, both classical randomization mech-
anisms and sophisticated control theoretic mechanisms maybe of
limited importance. This is because the temporal queue length may
only occasionally exceed the level targeted by AQM. Thus, trying
to stabilize the queue length in such scenarios may be less relevant,
because the queuing oscillations are largely independent of the ac-
tual AQM mechanisms. On the contrary, the use of ECN+ (i.e.,



Table 1: Normalized Throughput (%)
AQM scheme RED/ECN RED/ECN+ RED∗/ECN RED∗/ECN+ REM/ECN REM/ECN+ PI/ECN PI/ECN+

90% load 84.91 85.11 73.24 79.29 78.28 78.63 86.37 86.56
105% load 94.65 95.02 76.62 96.51 94.42 99.73 99.76 99.89

markinginstead of dropping packets) during these short congestion
periods can have a dominant impact on end-to-end performance.
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Figure 6: Threshold with ECN+ vs. PI without ECN; 90% load

Indeed, Figure 6 confirms our hypothesis. It depicts the web
response-time profiles of the threshold scheme with ECN+ and
PI without ECN. Despite the lack of sophisticated mechanisms,
the threshold scheme with ECN+ has a better response-time pro-
file than the dropping PI. More surprisingly, the throughputs of the
two schemes are approximately the same; 85.05% for the threshold
scheme and 86.09% for PI. Below, we develop a model to further
explain these results.

5.2.2 Modeling Queuing Behavior
Here, we develop a simple, yet insightful, model to understand

the impact of AQM mechanisms on delay and throughput in lightly
congested scenarios. While interactions between a particular AQM
scheme at the router and TCP congestion control at the endpoints
are essential for system operability, we make no attempts tomodel
these complex interactions (see references [7, 17] for suchattempts).
Instead, we apply anindirect approach. We first determine the
queuing behavior, in absence of AQM, as a function of link uti-
lization. Then, we compute the probability that the queue length
exceeds the level typically targeted by AQM algorithms. A large
probability of exceeding the targeted queue level implies apoten-
tially high impact of AQM mechanisms that aim to stabilize the
queue length at that level, while a small probability indicates a lim-
ited impact of such mechanisms on performance.

We model the router buffer as an M[X]/M/1 queue with a FIFO
service discipline. Packets arrive in the queue in bursts ofvarying
size governed by random variable X. The distribution of X is deter-
mined by TCP’s slow-start mechanisms, the size and distribution
of TCP’s receiver advertised windowparameterWmax,4 and the
flow size distribution. Assume first a short flow of sizes that never
exits the slow-start phase such that its window size never reaches
4According to measurements from [27], approximately 20% of
TCP flows have the advertised window parameter set to 8 kBytes,
35% to 16 kBytes, and the rest of 45% to 64 kBytes.

the bound determined byWmax. Thus, because the initial window
size is two packets [6], and because TCP’s slow-start mechanism
doubles the window size each round-trip-time, the flow arrives into
the system inn bursts of sizeXs = {2, . . . , 2n−1, Rs}, where
Rs = smod(2n − 1). On the contrary, larger flows will necessar-
ily hit the limit imposed by the receiver. Denote byl the (“large”)
file size in this scenario; the file arrives into the queue in bursts
of size Xl = {1, 2, . . . , Wmax, . . . , Wmax, Rl}, where the ac-
tual number of bursts and the remainder factorRl are functions
of l andWmax. Finally, by mapping the file-size distribution using
the above file-to-burst size transformations, and by using the three-
modal distribution forWmax [27], we can compute the burst-size
distribution X for any given flow-size distribution.

We justify the choice of the M[X]/M/1 model as follows. First,
the arrival process is Poisson because this realistically models high-
aggregation regimes in which bursts from many flows arrive atthe
queue. The same argument justifies the assumption of uncorre-
lated burstsizes: bursts produced by very long flows are limited
by theWmax parameter, and correlation among such bursts dimin-
ishes due to large numbers of other bursts that originate from many
different sources. Second, the model assumes the Poisson service
rate. While the service rate (packets/sec) is clearly deterministic in
practice, the Poisson assumption significantly simplifies our anal-
ysis here and at the same time only moderately overestimatesthe
queue length [17]. Finally, we do not model the impact of other
bottlenecks that can exist on an end-to-end path. Any distortion of
packet bursts on secondary bottlenecks would necessarily lead to
even shorter queue lengths than modeled here.

Denote byρ the load on the link, and byE(X) andE(X2) the
first and second moments of the burst size. Then, it could be shown
that the expected queue length,E(Q), can be expressed as

E(Q) =
ρ

1 − ρ

E(X) + E(X2)

2E(X)
. (1)

The derivation is given in [22].
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Figure 7 shows the expected queue length as a function of the
flow size, for a fixed load, and in a scenario where all generated
flows are of thesame size. While not representative of an actual
scenario, our goal here is to illustrate a good match betweenthe



model and simulations. The non-monotonic relationship between
the average queue length and the TCP flow length arises because
the average queue length peaks when the probability of largebursts
is highest and not when the average burst is highest. Our results
here line up well with the ones reported in [7], which are obtained
using the M/G/1 queuing model.

The key insight from Figure 7 is a particularly moderate level
of queuing with respect to the queuing delay typically targeted by
AQM schemes [15], despite a relatively high utilization level. This
implies a limited impact of AQM mechanisms that aim to stabi-
lize the queue length at the targeted level; an AQM algorithmcan
achieve this goal in a persistently congested scenario by sending
more frequent congestion indications, yet, an AQM cannot increase
the queue length in moments of traffic starvation. Indeed, the mean
queuing delay in lightly congested scenarios may often bebelow
the level targeted by AQM schemes (e.g., 5 ms, as proposed in
[15]). For example, Figure 7 indicates that a typical web-browsing
aggregate (e.g., the mean flow-size equals 7.22 packets [33]) would
have only a moderate (5 packets) average queue length.

While quite insightful, Figure 7 does not correspond to a real-
istic flow-size distribution. In addition, Equation (1) computes the
averagequeue length, which can be quite misleading in the case
of non-standard queuing distributions. Below, we use our model
in order to evaluate the impact of a realistic flow-size distribution,
and also to numerically compute the corresponding queue-size dis-
tribution.

We numerically solve the system of linear equations defined by
the matrix of M[X]/M/1 transition probabilities (see [22] for de-
tails) as follows. We start from the file-size distribution used in
the previous section, which is initially obtained from representa-
tive web-based network measurements [23, 33]. Next, using the
file-to-burst transformations developed above, we obtain the appro-
priate burst-size distribution, which enables us to solve the system
of M[X]/M/1 equations and obtain the queue size distribution. Fi-
nally, we compute the probability of the queue length exceeding the
level typically targeted by AQM algorithms, and present theresults
in Figure 8.
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function of the link load (web-traffic scenario)

We denote the link capacity byC. Figure 8 depicts both model-
ing and simulation results for the probability that the queue length
exceeds the 5 ms∗C level. Figure 8 depicts this probability as a
function of the link utilizationρ, and for the link capacities of
100 Mbps, 155 Mbps, and 622 Mbps. In addition, we perform sim-
ulations on aFIFO queue for three different random seeds. Figure
8 shows a good match between modeling and simulations, with the
difference that in this scenario the model behaves as an upper bound
for the simulation results.

The key point from Figure 8 is that the probability that the queue
length exceeds the 5 ms∗C threshold is indeed very small, which,

based on the above discussion, indicates a similar impact ofnon-
ECN-based AQM mechanisms. As expected, this impact increases
for higher utilization levels, and decreases for higher link-speeds.
For example, Figure 8 shows that forC = 622 Mbps andρ = 0.95,
the probability that the queue length exceeds the 5 ms∗C threshold
is smaller than 10%, indicating that the corresponding congestion
epochs are indeed very short. Nevertheless, AQM mechanismsare
still needed to control delay during these epochs, because asimple
FIFO queue lacks any such capabilities [23]. However, as indicated
in Figure 6, ECN-originated mechanisms, and much less sophis-
ticated AQM control mechanisms, are responsible for end-to-end
performance. Moreover, the use of ECN+ is of particular impor-
tance here, because it prevents unnecessary performance degrada-
tions (e.g., dropping SYN ACK packets) during short-lived conges-
tion periods.

5.2.3 Persistently Congested Links
Here, we increase the load to 105%. This means that the popula-

tion of web clients in this scenario increases such that theywould
generate a load of 105 Mbps on a 1 Gbps link. Therefore, this cre-
ates a persistently-congested environment for a 100 Mbps link. We
show that the impact of ECN+ on web response times increases
in such scenarios, while the two schemes (threshold-based and PI)
have approximately the same throughput. Below, we explain the
origins of such a behavior.

Our results (not shown due to space constraints, see reference
[22] for more details) reveal that the threshold-based scheme with
ECN+ outperforms PI without ECN by even a larger margin than
in the above lightly-congested scenario. This is because marking,
instead of dropping packets in this scenario has an even larger im-
pact on end-to-end performance. This is particularly true for SYN
ACK packets, which are marked in the case of ECN+. However,
a more interesting result is the impact of both schemes on normal-
ized throughput. It is 99.89% in the PI case, while it is 97.37%
for the ECN+-enabled threshold scheme. While PI’s control mech-
anisms are indeed developed for, and obviously perform wellin,
persistently-congested scenarios, the surprising resultis the high
throughput achieved by the threshold-based scheme. This isdespite
the fact that it lacks both generic anti-randomization mechanisms
as well as more advanced control mechanisms. Below, we explain
this phenomenon in more detail.

The key reasons for the high throughput achieved by the
threshold-based scheme with ECN+ are the following. First, while
droppingall packets when the instantaneous queue length exceeds a
given threshold can have devastating effects on TCP’s performance,
this is not necessarily the case when ECN is supported. This is be-
cause ECN-enabled TCP endpoints react to the event of multiple
marked packets within an RTT the same as if a single packet was
dropped [30]. Thus, the impact on throughput is not dramatic. Sec-
ond, even though short flows carry only 20% of the bytes in our
scenario, the fact that SYN ACK packets are not dropped has pos-
itive impact on throughput. However, the key reason for the good
performance of this generic scheme is an obvious lack of synchro-
nization among longer-lived flows.

Synchronization of TCP flows was one of the motivations for
RED [16]. The main goal of RED is avoiding the synchroniza-
tion of many TCP flows that decrease their window at the same
time, and thus degrade the system throughput. The key reasons for
the absence of synchronization in our scenario, despite thelack of
randomization mechanisms, are the following. First, whilewe do
generate long flows in our simulation (according to the file size dis-
tribution reported in [23, 33]), these flows are offinite size. Thus,
they are downloaded in finite time, which can sometimes not be



long enough to allow synchronization. Second, the fact thatTCP
flows are limited byWmax additionally decreases the probabil-
ity that synchronization will arise. Next, heterogeneous round-trip
times may also weaken these effects. Finally, in large aggregation
regimes, non-synchronized greedy short-RTT TCP flows are able to
quickly fill in “gaps” induced by possibly synchronized TCP sub-
aggregates.

5.3 General Traffic Mixes
So far, both modeling and simulation results are based on the

trace from [23, 33], which accurately represents web-traffic scenar-
ios. Here, we extend our analysis to general traffic mixes, which
are not limited to only web traffic.

We make a brief survey of recently reported measurements of
general flow-size distributions, and find two such representatives.
The first is reported by Garettoet al. in [17]; the distribution is
obtained from measurements taken on an access link of a campus
network; the second distribution is reported by Camposet al. in
[9]; it is obtained from measurements on an OC-48 link between
Indianapolis and Cleveland, and the trace is publicly available at
http://pma.nlan r.net/Traces/ long/ ipls1.html. While both distribu-
tions have “heavier” tails than the above web-based distribution,
such that the percentage of bytes that belong to long-lived flows be-
comes larger, only the second trace (from the OC-48 link) reveals
somewhat different trends for the impact of ECN+ and non-ECN-
based AQM mechanisms than reported above. Below, we present
those results, both for lightly and persistently congestedscenarios.

5.3.1 Lightly Congested Links
Here, we repeat the simulations for the lightly congested sce-

nario by using the file-size distribution obtained from the above
OC-48 trace. It is important to understand that we do not simply
plug the trace into our simulator. Instead, we use the file-size dis-
tribution which corresponds to this trace, and generate inter-arrival
times in simulations to achieve 90% load on a 100 Mbps link.

The response-time profiles (not shown due to space constraints)
for the two AQM schemes are similar to that of Figure 6, which
confirms the dominant impact of ECN+ on web response-time per-
formance. This is because the majority offlows in the experiment
are still short-lived, even though long flows carry approximately
90% of the bytes in this scenario. Hence, a heavier flow-size-
distribution tail has no impact on web response-time performance.
On the contrary, due to lack of any randomization or any othercon-
trol mechanisms, the throughput of the threshold-based AQMstarts
to lag behind PI’s more rapidly: it is 76.81% in the threshold-based
AQM case, and 80.92% for PI.
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function of the link load (general traffic scenario)

To further understand the above behavior, we re-apply our mod-
eling procedure and obtain the queue-size distribution that corre-

sponds to the above general file-size distribution. Figure 9depicts
the probability that the queue length exceeds the 5 ms∗C threshold
typically used in AQM algorithms. They-axis in Figure 9 indi-
rectly measures the “relevance” of non-ECN-based AQM mecha-
nisms (PI’s in this scenario). When compared to Figure 8, Figure 9
indicates longer queuing lengths, particularly for the 100Mbps and
155 Mbps scenarios. For example, for 90% load on a 100 Mbps link
(exactly our scenario here), the probability that the queuelength ex-
ceeds the targeted AQM threshold is larger than 0.5. This indicates
more persistent congestion levels, which invoke PI’s control mech-
anisms.

On the contrary, threshold-based AQM, despite ECN+ support,
lacks basic control mechanisms, and experiences moderate through-
put degradations. While it is well known that non-ECN-basedAQM
control mechanisms are required to achieve high throughputin per-
sistently congested environments dominated by long-livedtraffic
flows, our results indicate that such mechanisms are required even
for more moderate congestion levels. However, as the link speed
increases, Figure 9 shows that despite high utilization levels, the
queuing lengths are not as persistent. For example, forC =
622 Mbps and 95% utilization, the queuing lengths are light,
while for 90% they are almost non-existent despite heavier file-
size-distribution tail. Thus, our previous analysis indicates that the
generic ECN+ scheme would work well in such scenarios.

5.3.2 Persistently Congested Links
Finally, we re-create the persistently congested scenariowith

105% load on a 100 Mbps link, with the same flow-size distribu-
tion as above. The response-time profile (not shown due to space
constraints) again confirms the dominant impact of ECN+ on end-
to-end performance. However, the threshold-based scheme does
not keep pace with PI in throughput: threshold-based AQM hasa
normalized throughput of 88.43%, whereas PI achieves 96.48%.
As discussed above, a larger percentage of long-lived flows in-
creases the probability of flow-synchronization, which in turn
causes throughput degradation.

6. INCREMENTAL DEPLOYABILITY
In this section, we treat the problem of incrementally deploy-

ing ECN in the Internet. Given that it is impossible to force the
entire Internet community to simultaneously apply ECN, theques-
tion is how ECN- and non-ECN-enabled traffic streams affect each
other when they are multiplexed. To the best of our knowledge,
this issue has not yet been explored. The key problem with adding
any new functionality in the Internet is to fulfill the two follow-
ing, often contradictory, requirements: (i) to be “friendly” to the
endpoints that do not apply the innovation; and concurrently (ii)
achieve performance improvements, which are necessary to pro-
vide a reasonable incentive for endpoints to apply the innovation
in the first place. While it is well-known that ECN achieves the
first feature, we show below that ECN+ (implemented at servers)
successfully adds the second.

To become effective, ECN needs to be applied at clients, servers,
and the bottleneck router in between. Below, we assume ECN sup-
port at the congestion router and ECN+ support at servers, and
we control the percentage of ECN flows at the router by changing
the number of ECN-enabled clients. The same proportion of ECN
flows in the system (and the same effects as reported below) could
be achieved by assuming ECN support at clients and the congested
router, and then varying the percentage of ECN+-enabled servers.

Figure 10 depicts the response-time profiles for different levels
of ECN deployability in the web-based simulation scenario with
server and client pools. We set all the machines in the server-pool
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Figure 10: Incremental deployability, 98% load

to support ECN+ and initially only 5% of the clients support ECN.
Figure 10 shows that even the small percentage of ECN-enabled
clients manage to significantly improve their response times. This
is of particular importance because it provides a reasonable incen-
tive for clients to apply ECN; by doing so, they can achieve sig-
nificant performance improvements instantly, without waiting for
other clients to support the option.

Next, we increase the percentage of ECN-enabled clients to 50%.
Figure 10 shows that ECN-enabled clients still achieve nearly ideal
performance. At the same time, the performance of non-ECN-
enabled clients slightly degrades when compared to the previous
scenario. This degradation occurs because a larger percentage of
ECN-enabled flows better utilize the available bandwidth inthis
scenario and keep the average queuing length closer to RED’s
maxth parameter; this causes a larger number of SYN ACK pack-
ets belonging to non-ECN-enabled flows to be more frequently
dropped at the router. However, Figure 10 indicates that thedegra-
dation is not significant. Thus, while the performance improve-
ments areinstantfor the clients that apply ECN, the degradation of
non-ECN-enabled clients isgradual, which is a desirable property
that we discuss in more detail below.

Finally, we increase the percentage of ECN-enabled clientsto
95%. The response-time profile of such clients is slightly degraded
when compared to the previous scenario; this is because the sys-
tem throughput increases in scenarios with high ECN deployment,
as we discuss in detail in the following section. In addition, the
degradation of the small number (5%) of non-ECN-enabled flows
is now more pronounced. This is because such flows experience
the “TCP admission control” problem (explained in detail inSec-
tion 3.1) which they can solve by applying ECN.

7. TESTBED EXPERIMENTS
Here, we perform a set of testbed experiments with the goal of

verifying the above findings in a real system. The testbed con-
sists of a cluster of Intel Pentium IV 2.0 GHz machines running
Linux 2.4.18-14, with 512 MB SDRAM, and a 30 GB ATA-66 disk
drive. One of the machines is configured as a router and runs Nist-
net [2], an IP-layer network emulation package. The router sepa-
rates the remaining machines into client and server pools. We use
Nistnet to vary the RTT between clients and servers in the range
from 10 to 150 ms in order to emulate a wide-area network en-
vironment. In addition, we limit the bandwidth between the two
pools to 100 Mbps, which represents an uncongested scenario, and
10 Mbps, which represents a congested scenario, as we explain in

detail below. This setup enables us to experiment with a version of
RED implemented at the router. As explained in Section 4.1, this
version, which is “hardwired” to the Linux kernel and that wede-
note by RED∗, marks all ECN-enabled packets when the average
queue length exceeds themaxth parameter. We set all of RED∗’s
parameters according to the recommendation from [15], where the
reference-targeted queuing delay is set to 5 ms.

For our experimental workload, we utilize the TPC-W [5] bench-
mark to represent an e-commerce workload characterizing anon-
line bookstore site that serves dynamic web content; hence,it re-
quires access to a database server. Thus, the server pool in our sce-
nario consists of a web-server and a database tier. At the webtier,
we use a cluster of Apache web servers [4] and dynamic content
coded using PHP scripts [3] at the application layer. Accessto the
4 GB database tier is provided by a MySQL server [1]. The work-
load for TPC-W is generated by a client emulator which generates
the requests specified in TPC-W.

At the client pool, the client emulator opens persistent HTTP
connections to the web servers and sends a sequence of requests
for the dynamic content. The mean time between the openings of
two successive connections, together with the number of clients,
defines the request arrival rate at the web-server tier. However,
since each request for dynamic content can consist of several em-
bedded queries, access to the database server may become thesys-
tem bottleneck. Because we are interested in isolating and explor-
ing network-based effects, we proceed as follows.

Initially, we limit the network capacity between the clientand
server pools to 100 Mbps. Next, we set the number of clients and
the mean time between their arrivals such that the resultingaverage
network throughput, in the direction of servers to clients,becomes
15 Mbps. At the same time, we verify that this request rate does not
create a bottleneck at the database server. Finally, we limit the rate
between the two pools to 10 Mbps, which enables us to explore the
impact of RED∗ and ECN+ on end-to-end performance.
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Figure 11: Testbed Experiments: CDF Profiles

Figure 11 depicts the user-experienced response-time profiles in
different scenarios. The curve labeled“uncongested network”de-
picts the response times for the 100 Mbps scenario. The curvela-
beled “RED∗, no ECN” depicts the response time profile in the
10 Mbps scenario, in which RED∗ is applied but the endpoints do
not support ECN. The third curve, labeled”RED∗, with ECN,”
shows the response-time profile in the 10 Mbps scenario wherewe
configure both client and server machines with ECN. Finally,we
patch all web servers from the cluster with ECN+, and label the
corresponding curve“RED∗, with ECN+.” While Figure 11 shows



a clear improvement of ECN over the non-ECN scenario, and ECN+

over the ECN scenario, the impact on throughput is even more dra-
matic: the normalized throughput is 44% in the scenario without
ECN; 56% in the ECN scenario, and as much as 99% in the ECN+

scenario. Below, we explain in detail the key reasons for such sig-
nificant performance differences.

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100 1000

C
om

pl
em

. c
um

m
. p

ro
ba

b.

Response time (sec)

Uncongested network
RED*, no ECN

RED*, with ECN
RED*, with ECN+

Figure 12: Testbed Experiments: CCDF Profiles

Figure 12 depicts the complementary cumulative distribution
function (CCDF),1−Pr[X ≤ x], of response times for the above
four scenarios. The smaller the tail of the distribution is,the smaller
the mean response time, and the better the performance of a par-
ticular scheme. Certainly, the uncongested scenario showssuperior
performance. On the contrary, RED∗ without ECN has the heaviest
tail, which indicates that a large number of web responses experi-
ence multiple successive timeouts such that the mean response time
becomes 26 sec. At the same time, because most of the flows spend
time in long exponential backoffs, they are unable to successfully
utilize the available bandwidth; therefore, the normalized through-
put is as low as 44%. Next, the presence of ECN in TCP data pack-
ets improves both the mean response time, which now becomes
4.5 sec, and the throughput, which increases to 56%. However, the
key point from the figure is the large performance improvement of
ECN+ over ECN. In the ECN+ scenario, the presence of ECN in
both data and SYN ACK packets reduces the mean response time to
approximately 500 ms, while the normalized throughput becomes
as high as 99%. Most important, Figure 12 indicates that ECN+

does not achieve performance improvements by sacrificing system
stability. On the contrary, TCP endpoint control still applies ex-
ponential backoff, and some flows necessarily experience multiple
timeouts due to extremely heavy congestion, as shown in Figure
12. However, despite these circumstances, ECN+ avoids a large
number ofunnecessarytimeouts; when compared to the existing
ECN specification, ECN+ shifts the system closer to an ideal op-
erating point: web-servers manage to successfully serve approxi-
mately 50% more requests, the network throughput improves by
more than 40%, and the average client-experienced responsetime
improves by nearly an order of magnitude.

8. DISCUSSION AND RELATED WORK
ECN+ extends the existing ECN specification by enabling mark-

ing, instead of dropping, server-generated TCP control packets. In
this section, we discuss whether it is possible to achieve the same
performance simply by giving priority to TCP control packets at
routers. We also compare the ECN+ approach with AQM algo-
rithms that give preferential treatment to short flows.

The first question is whether it is possible to achieve similar ef-
fects simply by giving priority to TCP control packets at routers.
Giving priority to TCP SYN packets is certainly not an acceptable
option, because it opens the door to TCP SYN flood attacks. On

the contrary, giving priority to SYN ACK packets at routers would
certainly not have the same impact on performance. While theuse
of ECN in control packets certainly is important, this functionality
alone is not sufficient to achieve desirable performance without an
AQM algorithm at the router, the use of ECN in the TCP data plane,
and the ECN-enabled end-point congestion control. In this paper,
we showed that all of these mechanisms are essential to achieve
improved performance.

Next, because ECN+ achieves the largest performance improve-
ments in web-based scenarios, where short flows are dominant, we
compare the ECN+ approach with AQM schemes and architec-
tures that give preferential treatment to short flows. Guo and Matta
[18] use different marking/dropping functions at the routers and a
packet classifier at the network edge to distinguish betweenlong-
and short-lived TCP flows. While implementing such classifiers in
the Internet is indeed a challenging task, we nevertheless note that
ECN+ is orthogonal to the above solution, and the two could be
used together.

Similarly, Leet al. [24] propose an AQM scheme which gives a
strict priority to short flows, while it applies congestion control only
to long flows. The scheme distinguishes short from long flows by
tracking the number of packets that have been seen recently from
each flow at the router. There are several drawbacks of such an
approach. First, giving a strict priority to short flows invokes a fun-
damental vulnerability to malicious clients that can chop their files
into small pieces in order to improve performance or performa DoS
attack. Second, this approach also creates the possibilityof stabil-
ity problems in environments that consist of only short flows(e.g.,
the above dynamic web content experiment). If all flows are given
priority during congestion, high packet loss ratios are generated,
causing end-to-end delay characteristic to degrade.

Finally, while we demonstrated that ECN+ does not have any
of the above drawbacks, we note that it also impacts a much more
general set of scenarios and problems. First, it addresses ageneric
weakness of TCP’s connection-setup mechanism in which the loss
of a single control packet generates long exponential backoffs.
While this is certainly of particular importance in environments
dominated by short-lived flows, it also impacts the fairnessamong
long-lived flows (not shown in the paper), because newly arriving
flows can enter the system without waiting long initial timeouts.
Second, ECN+ is agenericaddition to ECN functionality; its im-
pact is not limited to any particular AQM scheme - it systematically
improves all ECN-enabled AQM algorithms.

9. CONCLUSIONS
This paper re-investigated the importance of ECN in light ofre-

cent measurements that reveal an extremely poor usage of this op-
tion in today’s Internet. We discovered a fundamental drawback of
the current ECN specification, and showed that the use of ECN in-
dications in TCP control packets can address an inherent weakness
of TCP’s handshake mechanism. A loss of a single control packet
can dramatically degrade system performance, primarily due to the
highly skewed distribution of Internet flow-sizes. While the use
of ECN bits in TCP SYN packets can potentially reinforce a well-
known server vulnerability to DoS attacks launched by malicious
clients, we showed that no such obstacle exists for the use ofECN
bits in server-generated control packets. Moreover, we argued that
such an approach (i) is more important, because the congestion is
much more likely to arise in the direction from the server to the
client; (ii) does not induce a challenge for system stability, because
TCP’s exponential-backoff mechanisms are used; and (iii) is easy
to deploy, because it requires minimal changes to servers only.

In order to deploy the above innovation at servers, and more im-



portantly, to initiate a high-scale deployment of ECN in theInter-
net, we argued that it is necessary to provide a set of novel incen-
tives that address particular needs of network providers and end-
points. On a case study of the web, we produced a set of such
incentives and showed that (i) web-servers that apply the above in-
novation can serve approximately 50% more requests, while the
average response times experienced by their clients improves by
nearly an order of magnitude; (ii) ECNsystematicallyimproves
the performance of all investigated AQM schemes (RED, REM,
and PI); (iii) web clients that apply ECN can experience the above
performance benefits instantly, independent of the actual number
and rate at which others adopt the option.

In an attempt to fully understand the importance of ECN, en-
riched with the above innovation, we studied the ECN functional-
ity in isolation from traditional randomization and control-theory-
based AQM mechanisms. Our findings are as follows. (i) For
web-only traffic mixes, ECN dominantly impacts web response-
times due to the large number of short-lived flows, such that even
a generic AQM scheme with ECN support outperforms non-ECN-
enabled AQM algorithms; hence, applying ECN in such environ-
ments is a more important factor than which AQM algorithm is
applied; (ii) for general traffic mixes, the superiority of ECN over
other AQM mechanisms largely holds for high-speed backbone
routers; this is because such traffic mixes give rise to only moderate
queuing lengths in high-speed environments, despite possibly high
utilization levels; (iii) for general traffic mixes at the network edge,
randomization and control-theoretic mechanisms are essential to
achieve high throughput; while this is a well-established result for
persistently-congested scenarios, we showed that the sameholds
for less-persistent congestion levels.
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