
Tesseract: A 4D Network Control Plane
Hong Yan†, David A. Maltz‡, T. S. Eugene Ng§, Hemant Gogineni†, Hui Zhang†, Zheng Cai§

†Carnegie Mellon University ‡Microsoft Research §Rice University

Abstract

We present Tesseract, an experimental system that en-
ables thedirect controlof a computer network that is un-
der a single administrative domain. Tesseract’s design
is based on the 4D architecture, which advocates the de-
composition of the network control plane intodecision,
dissemination, discovery, anddataplanes. Tesseract pro-
vides two primary abstract services to enable direct con-
trol: the dissemination servicethat carries opaque con-
trol information from the network decision element to the
nodes in the network, and thenode configuration service
which provides the interface for the decision element to
command the nodes in the network to carry out the de-
sired control policies.

Tesseract is designed to enable easy innovation. The
neighbor discovery, dissemination and node configura-
tion services, which are agnostic to network control poli-
cies, are the only distributed functions implemented in
the switch nodes. A variety of network control policies
can be implemented outside of switch nodeswithout the
need for introducing new distributed protocols. Tesser-
act also minimizes the need for manual node configu-
rations to reduce human errors. We evaluate Tesseract’s
responsiveness and robustness when applied to backbone
and enterprise network topologies in the Emulab envi-
ronment. We find that Tesseract is resilient to compo-
nent failures. Its responsiveness for intra-domain rout-
ing control is sufficiently scalable to handle a thousand
nodes. Moreover, we demonstrate Tesseract’s flexibility
by showing its application in joint packet forwarding and
policy based filtering for IP networks, and in link-cost
driven Ethernet packet forwarding.

1 Introduction

We present Tesseract, an experimental system that en-
ables thedirect control of a computer network that is
under a single administrative domain. The term direct
control refers to a network control paradigm in which a
decision elementdirectly and explicitly creates the for-
warding state at the network nodes, rather than indirectly
configuring other processes that then compute the for-
warding state. This paradigm can significantly simplify
network control.

In a typical IP network today, the desired control pol-
icy of an administrative domain is implemented via the
synthesis of several indirect control mechanisms. For

example, load balanced best-effort forwarding may be
implemented by carefully tuning OSPF link weights to
indirectly control the paths used for forwarding. Inter-
domain routing policy may be indirectly implemented by
setting OSPF link weights to change the local cost met-
ric used in BGP calculations. The combination of such
indirect mechanisms create subtle dependencies. For in-
stance, when OSPF link weights are changed to load bal-
ance the traffic in the network, inter-domain routing pol-
icy may be impacted. The outcome of the synthesis of
indirect control mechanisms can be difficult to predict
and exacerbates the complexity of network control [1].

The direct control paradigm avoids these problems be-
cause it forces the dependencies between control policies
to become explicit. In direct control, a logically central-
ized entity called the decision element is responsible for
creating all the state at every switch. As a result, any con-
flicts between the policy objectives can be detected at the
time of state creation. With today’s multiple independent
and distributed mechanisms, these conflicts often only
appearin vivo after some part of the configuration state
has been changed by one of the mechanisms.

The direct control paradigm also simplifies the switch
functionality. Because algorithms making control de-
cisions are no longer run at switches, the only distrib-
uted functions to be implemented by switches are those
that discover the neighborhood status at each switch and
those that enable the control communications between
the decision element and the switches. Thus, the switch
software can be very light-weight. Yet, sophisticated
control algorithms can be easily implemented with this
minimal set of distributed functions.

The Tesseract (a tesseract is a 4-dimensional cube)
system is based on the 4D architecture that advocates the
decomposition of the network control plane into thedeci-
sion, dissemination, discovery, anddataplanes. Tesser-
act implements two services to enable direct control:
Dissemination service:The dissemination service pro-
vides a logical connection between decision element and
network switch nodes to facilitate direct control. The
dissemination service only assumes network nodes are
pre-configured with appropriate keys and can discover
and communicate with direct physical neighbors. The
dissemination service thus enables plug-and-play boot-
strapping of the Tesseract system.
Node configuration service: The node configuration
service provides an abstract packet lookup table interface
that hides the details of the node hardware and software

4D Network

Discovery Plane

Dissemination Plane

Data Plane

Neighbor

Network

Decision Plane

Decision Element

End Host
Switch

Figure 1: The 4D architectural concepts.

from the decision element. Each table entry contains a
packet matching rule and the corresponding control ac-
tions. The decision element issues commands to the node
configuration service through the logical connection pro-
vided by the dissemination service.

This paper presents the design, implementation, eval-
uation, and demonstration of the Tesseract system. To
guide our design, we explicitly select a set of goals and
devise solutions to address them. We deploy Tesseract
on Emulab [2] to evaluate its performance. We show
how Tesseract can rapidly react to link, node, and de-
cision element failures and efficiently re-configure net-
work switches in response. Also, micro-benchmark ex-
periments show that the system can easily handle the
intra-domain routing control for a thousand-node net-
work. We then demonstrate Tesseract’s flexibility by
showing its applications in joint packet forwarding and
policy based filtering in IP networks, and in link cost
driven Ethernet packet forwarding.

2 From the 4D Architecture to Tesseract
Design Goals

This section explains the key concepts in the 4D architec-
ture. Since the 4D architecture describes a very large de-
sign space, we present the design goals we used to guide
our design of the specific Tesseract system.

2.1 The 4D Architectural Concepts

The 4D architecture advocates decomposing the network
control plane into four conceptual components:decision,
dissemination, discovery, anddata planes. These con-
ceptual components are illustrated in Figure 1 and are
explained below. For an in-depth discussion of the 4D
architecture, please refer to [3].

Data plane: The data plane operates in network switches
and provides user services such as IPv4, IPv6, or Eth-
ernet packet forwarding. The actions of the data plane
are based on the state in the switches, and this state
is controlled solely by the decision plane. Example
state in switches includes the forwarding table or for-
warding information base (FIB), packet filters, flow-
scheduling weights, queue-management parameters, tun-
nels and network address translation mappings, etc. The
arrow in the figure represents an end-to-end data flow.
Discovery plane:Each switch is responsible for discov-
ering its hardware capabilities (e.g., what interfaces are
on this switch and what are their capacities? How many
FIB entries can the switch hold?) and its physical con-
nectivity to neighboring switches. A border switch ad-
jacent to a neighboring network is also responsible for
discovering the logical connectivity to remote switches
that are reachable via that neighbor network (in today’s
environment, this may be implemented by an eBGP ses-
sion). The dotted arrows in the figure represent the local
communications used for discovering connectivity. The
information discovered is then reported to the decision
element in the decision plane via the logical connections
maintained by the dissemination plane. The solid ar-
rows in the figure represent these reporting activities. For
backward compatibility, end hosts do not explicitly par-
ticipate in the discovery plane.
Dissemination plane: The dissemination plane is re-
sponsible for maintaining robust logical channels that
carry control information between the decision element
and the network switches. The arrows in the figure repre-
sent the paths used by the logical channels. While control
information may traverse the same set of physical links
as the data packets in the data plane, the dissemination
paths are maintained separately from the data paths so
they can be operational without requiring configuration
or successful establishment of paths in the data plane. In
contrast, in today’s networks, control and management
information is carried over the data paths, which need
to be established by routing protocols before use. This
creates a circular dependency.
Decision plane: The decision plane consists of a log-
ically centralized decision element that makesall deci-
sions driving network control, such as reachability, load
balancing, access control, and security. The decision
element makes use of the information gathered by the
discovery plane to make decisions, and these decisions
are sent as commands to switches via the dissemination
plane (shown as arrows in the figure). The decision ele-
ment commands the switches using the node configura-
tion service interface exposed by the network switches.
While logically centralized as a single decision element,
in practice multiple redundant decision elements may be
used for resiliency.

2.2 Tesseract Design Goals

Tesseract is based on the general 4D architectural con-
cepts, but these concepts admit a wide variety of design
choices. We used the following goals to guide our deci-
sions while designing Tesseract, and these goals can be
roughly grouped into three categories. The first category
concerns system performance and robustness objectives:

Timely reaction to network changes:Planned and un-
planned network changes, such as switch maintenance
and link failures, can cause traffic disruption. Tesseract
should be optimized to react to network changes quickly
and minimize traffic disruption.

Resilient to decision plane failure: Tesseract should
provide built-in support for decision plane redundancy
so that it can survive the failure of a decision element.

Robust and secure control channels:The logical chan-
nels for control communications maintained by Tesseract
should continue to function in the presence of compro-
mised switches, decision elements or failed links/nodes.

The next set of goals concern making Tesseract easy
to deploy:

Minimal switch configuration: The Tesseract software
on each switch should require no manual configuration
prior to deployment except for security keys that identify
the switch. We do, however, assume that the underlying
switch allows Tesseract to discover the switch’s proper-
ties at run-time.

Backward compatibility: Tesseract should require no
changes to the end host software, hardware, or protocols.
Thus, Tesseract can be deployed as the network control
system transparently to the end users.

The final set of goals concerns making Tesseract a
flexible platform:

Support diverse decision algorithms:Tesseract should
provide a friendly platform on which diverse algorithms
can be easily implemented to control networks.

Support multiple data planes: Tesseract should sup-
port heterogeneous data plane protocols (e.g., IP or Eth-
ernet). Thus, the system should not assume particu-
lar data plane protocols and the dissemination service
should be agnostic to the semantics of the control com-
munications.

3 Design and Implementation of Tesseract

In this section, we present the design and implementa-
tion of Tesseract. We first provide an overview of the
software architecture, and then discuss each component
of the system in detail.

network

Hello

wide

LSA

view

Packet

Heartbeat

Filtering

network−level objectives

config
Switch

host information

Host
Discovery

Explorer

config
Switch

config
Switch

Switches
Other

Decision Elements
Other

switch information

Dissemination

Click
Ethernet
Switching

Linux
IP
Forwarding

Linux
Packet

Host

Decision Element

Switch

Decision

Dissemination

Discovery
Switch

Driver

Resiliency

Driver Driver

Path

Figure 2: High-level overview of Tesseract.

3.1 System Overview

The Tesseract system is composed of two applications
implemented on Linux. These applications are called the
Switch and the Decision Element (DE). Figure 2 illus-
trates the software organization of these applications.

The discovery plane implementation currently deals
only with neighbor node discovery. It includes two mod-
ules, one for discovering hosts connected to the switch
and the other for discovering other switches. The switch
discovery module exchanges hello messages with neigh-
bor switches to detect them, and creates Link State Ad-
vertisements (LSAs) that contain the status of its inter-
faces and the identities of the switches connected to the
interfaces. The generated LSAs are reported toDE via
the dissemination plane. To avoid requiring changes to
hosts, the discovery plane identifies what hosts are con-
nected to a switch by snooping the MAC and IP ad-
dresses on packets received on the interfaces that are not
connected to another switch.

The dissemination plane is cooperatively implemented
by bothSwitch andDE. The dissemination service is
realized by a distributed protocol that maintains robust
logical communication channels between the switches
and decision elements.
Switch leverages existing packet forwarding and fil-

tering components to implement the data plane.Switch
interacts withDE in the decision plane through the node
configuration service interface. The interface is imple-
mented by data plane drivers, which translate generic
configuration commands fromDE into specific config-
urations for the packet forwarding and filtering compo-
nents.
DE implements the discovery, dissemination and de-

cision planes. The discovery and dissemination plane
functions are as outlined above. The decision plane con-
structs an abstract network model from the information
reported by the switches and computes switch configura-
tion commands for all the switches based on the specific

InterfaceElement ElementInterface

Network Model

Topology Generation

Generate network model

Operate on network model

Map model to
network specific
representations

Ethernet Plugin

Spanning Tree Algorithm Filter Placement Algorithm

Load Balancing AlgorithmShortest Path Algorithm

LSA

IP Plugin

IP Configs Ethernet Configs

Figure 3: The network model separates general purpose
algorithms from network specific mechanisms.

decision algorithm used. The computed switch configu-
ration commands are sent to the switches via the dissem-
ination service.

3.2 Decision Plane: Versatility, Efficiency
and Survivability

The decision plane implements a platform for the deploy-
ment of network control algorithms. In addition, it im-
plements mechanisms that enable the replication of the
decision logic among multiple decision elements (DEs)
so that DE failures can be tolerated.
Support diverse network control algorithms: In de-
signing the decision plane, our focus is not to hard-wire
sophisticated network decision logics into the system.
Instead, our goal is to make the decision plane a friendly
platform where any network control algorithm can be
easily integrated and used to control any suitable network
technology. Towards this end, we introduce an abstract
network model to separate generic network control algo-
rithms (e.g., shortest path computation, load balancing)
from network specific mechanisms (e.g., IP, Ethernet).

Figure 3 illustrates the abstract network model. The
model consists of node element and link interface ob-
jects, and is constructed from information discovered
and reported by switches (e.g. LSA) through the dis-
semination service. Operating on this model, Tesser-
act currently implements four generic algorithms: in-
cremental shortest path, spanning tree, joint packet fil-
ter/routing (Section 5.1), and link-cost-based traffic en-
gineering (Section 5.2). Finally, technology-specific
plug-ins translate the general control decisions into net-
work specific configuration commands that are sent to
switches via the dissemination service. These commands
are then processed by the node configuration service at
individual switches.

As an example, we implement an incremental shortest
path algorithm [4] on the abstract network model, and the
same code can be used to generate either IP routing table
in IP networks or Ethernet forwarding entries in Ethernet.

Efficient network event processing:The DE must ef-
ficiently handle multiple simultaneous network changes,
which the DE will receive as events communicated over
the dissemination plane. We chose a different event
processing architecture than that used in typical imple-
mentation of OSPF, where a hold-down timer is used to
delay the start of route recomputation after an event ar-
rives to force the batching of whatever events arrive dur-
ing the hold-down window.

Instead, the Tesseract DE uses apush timer. The DE
runs a decision thread that processes all queued events
to update the network-wide view, starts the push timer
as a deadline for pushing out new switch configuration
commands, and then enters its computation cycle. After
the compution of new forwarding state finishes, the DE
will immediately push out the new commands if the push
timer has expired, if the event queue is empty, or if the
queued events do not change the network-wide view used
in the computation. Otherwise, the DE will dequeue all
pending events and re-compute.

We use a push timer instead of a fixed hold-down timer
for two reasons. In the common case where a single link
fails, the push timer avoid unnecessary waiting. The first
LSA announcing the failure starts the route recomputa-
tion, and subsequent LSAs announcing the same failure
do not change the network-wide view and so are ignored.
In the less common case of multiple failures, a push timer
may result in recomputation running more than once for
the same event. However, since recomputation has la-
tency on the same order as typical hold-down timers and
DEs are unlikely to be CPU-limited, it is reasonable to
trade off extra computation for faster reconvergence.

The DE also records the state that has been pushed
to each switch and uses delta-encoding techniques to re-
duce the bandwidth required for sending configuration
commands to the switches. Acknowledgments between
DE and the node configuration service on each switch
ensure the delta-encoded commands are received.
Provide decision plane resiliency:Our decision plane
copes with DE failures using hot-standbys. At any time a
single master DE takes responsibility for configuring the
network switches, but multiple DEs can be connected to
the network. Each standby DE receives the same infor-
mation from the switches and performs the same compu-
tations as the master. However, the standby DEs do not
send out the results of their computations.

The master DE is selected using a simple leader elec-
tion protocol based on periodic DE heartbeats that carry
totally ordered DE priorities. Each DE has a unique pri-
ority, and at boot time it begins flooding its priority with
a heartbeat message every heartbeat period (e.g., 20 ms).
Each DE listens for heartbeats from other DEs for at least
five times the heartbeat period (we assume that 5 times
heartbeat period will be greater than the maximum la-

tency of a packet crossing the network). After this wait-
ing period, the DE that has the highest priority among all
received heartbeats decides to be the master and begins
sending commands to switches. When the master DE re-
ceives a heartbeat from a DE with a higher priority than
its own, it immediately changes into a standby DE and
ceases sending commands to switches. A DE also peri-
odically floods a path explorer message, which has the
effect of triggering switches to reply with their current
state. In this way, a new DE can gather the latest switch
state. Switches simply process commands from any DE.
Authentication is handled by the dissemination plane and
is discussed next.

3.3 Dissemination Plane: Robustness and
Security

The goal of the dissemination plane is to maintain robust
and secure communication channels between each DE
and the switches. With respect to robustness, the dissem-
ination plane should remain operational under link and
node failure scenarios. With respect to security, the net-
work should remain operational when a switch or even a
DE is compromised.

Observing that the traffic pattern in dissemination
plane is few-to-many (switches communicate not with
each other, but only with the DEs), we adopt an asym-
metric design where the dissemination module at a DE
node implements more functionality than the dissemina-
tion module at a switch.
Dissemination plane design overview:Tesseract’s dis-
semination plane is implemented using source routes.
Each control message is segmented into dissemination
frames, and each frame carries in its header the iden-
tity of the source, destination, and the series of switches
through which it must pass. We choose a source rout-
ing solution because: (1) It requires the minimal amount
of routing state and functionality in each switch. Each
switch needs only to maintain the routes to the DEs. (2)
Source routes provide very flexible control over routing,
as a different path can be specified for each destination,
making it easy to take advantage of preferred paths sug-
gested by the decision plane. (3) Combining source rout-
ing with the few-to-many communication pattern enable
us to design a dissemination plane with desirable secu-
rity properties, as discussed below. To protect control
communications from user data traffic, the queuing of
dissemination frames is separate from user data traffic
and dissemination frames have higher transmission pri-
ority. To protect the source-routes from being misused
by adversaries inside the network, we encrypt them at
each hop before they are forwarded.
Threat model: Tesseract is designed to cope with the
following threats: (1) Adversaries can compromise a

switch, gaining full control over it including the ability to
change the way dissemination packets are forwarded; (2)
A compromised switch can piggyback data on packets to
collude with other compromised switches downstream;
(3) A compromised switch can peek into dissemination
plane data to try to learn the network topology or loca-
tion of critical resources; and (4) Adversaries can com-
promise a DE and use it to install bad forwarding state
on the switches.
Bootstrapping security: The Tesseract trust model is
based on anetwork certificate(i.e., a signed public key
for the network) — all the other keys and certificates are
derived from the network certificate and can be replaced
while network continues operating. Switches will accept
commands from any DE holding a DE certificate that is
signed by the network certificate. The private key of the
network certificate is secret-shared [5] among the DEs,
so that any quorum of DEs can cooperate to generate a
new DE certificate when needed.

When a switch is first deployed, the network certifi-
cate and a DE certificate are installed into it. This is
done by plugging a USB key containing the certificates
into each switch or as part of the default factory config-
uration of the switch before it is deployed in the field.
The switch then constructs a DeviceID, which can be as
simple as a randomly generated 128-bit number, and a
private/public key pair. The switch stores the network
and DE certificates, its DeviceID, and its key pair into
nonvolatile memory. The switch then encrypts the in-
formation with the public key of the DE, and writes it
back onto the USB key. When the USB key is eventu-
ally inserted into a DE, the DE will have a secret chan-
nel to each device and a list of the valid DeviceIDs. As
each switch communicates with a DE for the first time, it
uses ISAKMP [6] and its private/public keys to establish
a shared-secret key known only by that switch and the
DE. All subsequent dissemination plane operations use
symmetric cryptography.
Computing dissemination plane routes: Dissemina-
tion plane routes are computed by each decision element
flooding a path explorer message through the network.
To ensure fast recovery from link failures, the path ex-
plorer is sent periodically every 20 ms in our prototype,
and can be triggered by topology updates.

Onion-encryption(or encapsulated encryption) is used
in path explorers to support dissemination security. The
DE initiates the path explorer by embedding its DeviceID
as the source route and flooding it over all its ports. When
a switch receives the path explorer, it (1) optionally veri-
fies the route to the DE contained in the path explorer; (2)
records the source route; (3) encrypts the existing source
route using the secret key it shares with the DE that sent
the path explorer; (4) appends its own DeviceID to the
path explorer in plain text; and (5) floods the path ex-

plorer out its other interfaces. Path explorers carry se-
quence numbers so that switches can avoid unnecessary
re-flooding.

To send data to a DE, a switch uses the encrypted
source route it recorded from a path explorer sent by that
DE. When an upstream switch receives the message, it
decrypts the source-route using its secret key. This re-
veals the ID of the next hop switch along the path to the
DE. By successive decryption of the source route by the
on-route switches, dissemination plane packets are de-
livered to the DE. Since the DE knows the secret-key of
every switch, it can construct an onion-encrypted route
to any switch it desires.

As part of the negotiation of its secret key over
ISAKMP, each switch learns whether it is required to
perform the optional source route verification in step (1)
before forwarding a path explorer. If verification is re-
quired, the switch first checks a cache of source routes
from that DE to see if the source route has already been
verified. If the source route is not known to be valid, the
switch forwards the source route to the DE in a signed
VERIFY packet. Since the DE knows the secret keys
of all the switches, it can iteratively decrypt the source
route and verify that each hop corresponds to link it has
learned about in an LSA. Once verified, the DE sends
a VERIFYOK message to the switch using the extracted
source route, confirming the validity of the route. The
DE confirmation is signed with a HMAC computed us-
ing the secret key of the destination switch to prevent it
from being tampered or forged.
Security properties: The optional verification step ex-
poses a classic trade-off between security and perfor-
mance. In Tesseract, we provide a dissemination plane
with two different levels of security. The network opera-
tor can choose the semantics desired.

The basic security property is that a compromised
switch cannot order other switches to install invalid for-
warding state or forge LSAs from other switches. This is
achieved by each switch having a secret key shared only
with the DE.

If path explorers arenot verified before being for-
warded, a compromised switch can forge path explorers
that artificially shorten its distance to the DE and attract
dissemination plane traffic from other switches (e.g., so
the attacker can drop or delay the traffic). Compromised
switches can also communicate with each other over the
dissemination plane to coordinate attacks.

If path explorersare verified before being forwarded,
a compromised switch cannot lie about its distance to
the DE. Also, compromised switches are prevented from
communicating arbitrarily over the dissemination plane
unless they are directly connected. This is because the
DE will not validate a source route that originates and
ends at switches. A switch also cannot discover the iden-

tity or connectivity of another switch that is two or more
hops away. This prevents attackers from identifying and
targeting critical resources in the network.

The cost of the extra security benefits provided by ver-
ifying source routes is the extra latency during recon-
vergence of the dissemination plane. If a link breaks
and a switch receives path explorers over a source route
it has not previously verified, it must wait a round-trip
time for the verification to succeed before the switches
downstream can learn of the new route to the DE. One
approach to minimize this penalty is for the DE to pre-
populate the verified source route tables of switches with
the routes that are most likely to be use in failure sce-
narios. A triggered path explorer flooded by the DE in
response to link failure will then quickly inform each
switch which preverified routes are currently working.
Surviving DE compromise: As a logically central-
ized system, if a DE were compromised, it could order
switches to install bad forwarding state and wreck havoc
on the data plane. However, recovery is still possible.
Other DEs can query the forwarding state installed at
each switch and compare it to the forwarding state they
would have installed, allowing a compromised or misbe-
having DE to be identified. Because the private key of
the network certificate is secret-shared, as long as a quo-
rum of DEs remain uncompromised they can generate a
new DE certificate and use the dissemination plane to re-
motely re-key the switches with this new DE certificate.

Notice that while a compromised DE can totally dis-
rupt data plane traffic, itcannotdisrupt the dissemination
traffic between other DEs and the switches. This is one of
the benefits of having control traffic traversing a secured
dissemination plane that is logically separate from paths
traversed by data packets. Once re-keyed, the switches
will ignore the compromised DEs.

As a point of comparison, in today’s data networks re-
covering from the compromise of a management station
is hard as the compromised station can block the uncom-
promised ones from reaching the switches. At the level
of the control plane, the security of OSPF today is based
on a single secret key stored in plain-text in the configu-
ration file. If any switch is compromised, the key is com-
promised, and incorrect LSAs can be flooded through the
network. The attacker could then DoS all the switches by
forcing them to continuously rerun shortest path compu-
tation or draw traffic to itself by forging LSAs. Since
a distributed link-state computation depends on all-to-all
communications among the switches, one alternative to
using a single shared key is for each switch to negotiate
a secret key with every other switch. Establishing this
O(n2) mesh of keys requires every switch to know the
public key of every other switch. Both key establishment
and revocation are more complex when compared to the
direct control paradigm of Tesseract.

3.4 Discovery Plane: Minimizing Manual
Configurations

The discovery plane supports three categories of activi-
ties: (1) providing the DE with information on the state
of the network; (2) interacting with external networks
and informing the DE of the external world; and (3) boot-
strapping end hosts into the network.
Gathering local information: Since misconfiguration is
the source of many network outages, the 4D architecture
eliminates as much manually configured state as possi-
ble. In the long term vision, the switch hardware should
self-describe its capabilities and provide run-time infor-
mation such as traffic load to the discovery plane. The
current Tesseract implementation supports the discovery
of physical switch neighbors via periodic HELLO mes-
sage exchanges. Switches are identified by the same De-
viceID used in the dissemination plane.
Interacting with external networks: The DE directs
the border switches that peer with neighbor networks
to begin eBGP sessions with the neighbor switches.
Through this peering, the DE discovers the destinations
available via the external networks. Rather than process-
ing the BGP updates at the switches, the switches simply
report them to the DE via the dissemination service, and
the DE implements the decision logic for external route
selection. The DE sends the appropriate eBGP replies
to the border switches, as well as configuring external
routes directly into all the switches via the dissemination
service. RCP [7] has already demonstrated that the over-
all approach of centralized BGP computation is feasible,
although they continue to use iBGP for backward com-
patibility with existing routers.

It is important to note that an internal link or switch
failure in a Tesseract network does not lead to massive
updates of external routes being transmitted from the DE
to the switches. The reason is that external routes iden-
tify only the egress points. External and internal routes
are maintained in two separate tables and are combined
locally at switches to generate the full routing table. This
is identical to how OSPF and BGP computed routes are
combined today. In general, an internal link or switch
failure does not change external routes and thus no up-
date to them is necessary.
Bootstrapping end hosts:For backward compatibility,
end hosts do not directly participate in Tesseract discov-
ery plane.

In networks running IP, the discovery plane acts as a
DHCP proxy. The DE configures each switch to tun-
nel DHCP requests to it via the dissemination service.
Whenever a host transmits a DHCP request, the DE
learns the MAC address and the connection point of the
host in the network. The DE can then assign the appro-
priate IP address and other configuration to the host.

In networks operating as a switched Ethernet LAN,
the discovery plane of a switch reports the MAC address
and the connection point of a newly appeared end host
to the DE. The DE then configures the network switches
appropriately to support the new host. Section 5.2 de-
scribes how we use Tesseract to control a switched Eth-
ernet LAN and provide enhancements.

3.5 Data Plane: Support Heterogeneity

The data plane is configured by the decision plane via
the node configuration service exposed by the switches.
Tesseract abstracts the state in the data plane of a switch
as a lookup table. The lookup table abstraction is quite
general and can support multiple technologies such as
the forwarding of IPv4, IPv6, or Ethernet packets, or the
tunneling and filtering of packets, etc.

Tesseract’s data plane is implemented using existing
Linux kernel and Click components. For each com-
ponent, we provide a driver to interface the compo-
nent with the Tesseract decision plane as shown in Fig-
ure 2. The drivers model the components as lookup
tables and expose a simpleWriteTable interface to
provide the node configuration service to the DE. For
example, when the DE decides to add or delete an IP
routing or Ethernet forwarding table entry, it sends a
add table entry or delete table entry com-
mand through theWriteTable interface, and the
driver is responsible for translating the command into
component-specific configurations. This allows the algo-
rithms plugged into the DE to implement network control
logic without dealing with the details of each data-plane
component. We implemented three drivers and describe
their details next.
Linux IP forwarding kernel: The Linux kernel can
forward packets received from one network interface to
another. To determine the outgoing network interface,
the Linux kernel uses two data structures: a Forward-
ing Information Base (FIB) that stores all routes, and
a routing cache that speeds up route search. As in all
Tesseract data plane drivers, the driver for Linux IP for-
warding kernel implements theWriteTable interface.
The driver interprets commands from the DE, creates a
rtentry structure with the route to add or delete, and
invokes theioctl system call to modify the FIB. We set
proc/sys/net/ipv4/route/min delay to zero
so that the routing cache is flushed immediately after the
FIB is modified.
Click router: We use Click for forwarding Ethernet
frames. The driver for Click includes two parts: an
implementation of theWriteTable interface, and a
Click element package called the4DSwitch that is inte-
grated into Click. The implementation ofWriteTable
parses commands and executes those commands by

exchanging control messages with the 4DSwitch ele-
ment in the Click process via a TCP channel. The
4DSwitch element maintains an Ethernet forwarding
table and updates the table according to the received con-
trol messages. To control the data forwarding behavior
of Click, the 4DSwitch element overrides the Click
Element::push function and directs incoming traf-
fic to the outgoing port(s) specified in the4DSwitch
forwarding table.
netfilter/iptables: Tesseract uses netfilter/iptables to
implement reachability control in IP networks. The
driver for netfilter/iptables translates commands into ipt-
ables rules (e.g.,-A FORWARD -s 10.1.1.0/24
-d 10.1.2.0/24 -i eth0 -j DROP) and forks
an iptables process to install the rules.

3.6 Decision/Dissemination Interface

In designing the interface between the decision plane and
the dissemination plane, there is a tension between the
conflicting goals of creating a clean abstraction with rigid
separation of functionality and the goal of achieving high
performance with the cooperation of the decision and
dissemination planes.

The key consideration is that the dissemination plane
must be able to function independently of the decision
plane. Our solution is to build into the dissemina-
tion plane a completely self-contained mechanism for
maintaining connectivity. This makes the dissemina-
tion plane API very simple, giving the basic decision
plane only three interface functions:Send(buf,dst),
which sends control information to a specific switch,
Flood(buf), which floods control information to all
switches, andRegisterUpCall(*func()), which
identifies the decision plane function that handles incom-
ing information.

However, to optimize the performance of the dis-
semination plane, we add two interface functions:
LinkFailure(link), which the DE uses to identify
a known failed link to the dissemination plane so the
dissemination plane can avoid it immediately, and
PreferredRoute(dst,sourceRoute), which
the DE uses to suggest a specific source route for car-
rying control information to switchdst. This solution
enables a sophisticated DE to optimize the dissemination
plane to its liking, but also allows the simplest DE to
fully function.

4 Performance Evaluation

In this section, we evaluate Tesseract to answer the fol-
lowing questions: How fast does a Tesseract-controlled
network converge upon various network failures? How
large a network can Tesseract scale to and what are the

0

10

20

30

40

50

60

70

80

90

100

 0 50 100 150 200 250 300 350 400 450 500

F
ra

ct
io

n
of

 E
xp

er
im

en
ts

 (
%

)

Convergence Time (in ms)

Tesseract (single link failures, enterprise)
Fast OSPF (single link failures, enterprise)
Fast OSPF (single link failures, backbone)

Tesseract (single link failures, backbone)

Figure 4: CDF of convergence times for single link fail-
ures in enterprise and backbone networks. We pick one
link to fail at a time and we enumerate all the links
to get the distribution of convergence times. The zero
convergence times are caused by failures disconnecting
switches at the edge of the network.

bottlenecks? How resilient is Tesseract in the presence
of decision-element failures?

4.1 Methodology

We perform both emulation and simulation experiments.
We use Emulab to conduct intra-domain routing exper-
iments using two different topologies. The first topol-
ogy is an ISP backbone network (AS 3967) from Rock-
etfuel [8] data that spans Japan, U.S., and Europe, with a
maximum round trip delay of 250 ms. The other is a typ-
ical enterprise network with negligible propagation delay
from our earlier study [9].

Emulab PCs have 4 interfaces each, so routers that
have more than 4 interfaces are modeled by chaining to-
gether PCs to create a “supernode” (e.g., a router with
8 interfaces will be represented by a string of 3 Emulab
PCs). As a result, the backbone network is emulated by
114 PCs with 190 links, and the enterprise network is
emulated by 40 PCs with 60 links. For each Tesseract
experiment, there are 5 decision elements — these run
on “pc3000” machines that have a 3GHZ CPU and 2GB
of RAM. To inject a link failure, we bring down the in-
terface with theifconfig down command. To inject
a switch failure, we abruptly terminate all the relevant
software running on a switch.

So that we evaluate the worst-case behavior of the con-
trol plane, we measure the time required for theentire
network to reconverge after an event. We calculate this
network convergence time as the elapsed time between
the event occurring and the last forwarding state update
being applied at the last switch to update. We use Emu-
lab’s NTP (Network Time Protocol) servers to synchro-
nize the clocks of all the nodes to within 1 millisecond.

As a point for comparison, we present the performance

of anaggressively tunedOSPF control plane called Fast
OSPF. Fast OSPF’s convergence time represents the best
possible performance achievable by OSPF and it is de-
termined by the time to detect a link failure and the one
way propagation delay required for the LSA flood. Such
uniform and aggressive tuning might not be practical in
a real network as it could lead to CPU overload on older
routers, but Fast OSPF serves as a useful benchmark.

We implemented Fast OSPF by modifying
Quagga 0.99.4 [10] to support millisecond timer
intervals. There are four relevant timers in Quagga:
(1) the hello timer that sets the frequency of HELLO

messages; (2) the dead timer that sets how long after the
last HELLO is received is the link declared dead; (3) the
delay timer that sets the minimum delay between receiv-
ing an LSA update and beginning routing computation;
and (4) the hold-down timer that sets the minimum
interval between successive routing computations. For
Fast OSPF, we use hello timer = 20 ms, dead timer
= 100 ms, delay timer = 10 ms (to ensure a received
LSA is flooded before routing computation begins), and
0 ms for the hold-down timer. Tesseract uses the same
hello and dead timer values to make direct comparison
possible. There is no need for the delay timer or the
hold-down timer in Tesseract.

4.2 Routing Convergence

Common concerns with using a logically centralized DE
to provide direct control are that reconvergence time will
suffer or the DE will attempt to control the network us-
ing an out-of-date view of the network. To evaluate these
issues, we measure intra-domain routing convergence af-
ter single link failures, single switch failures, regional
failures (i.e., simultaneous multiple switch failures in a
geographic region), and single link flapping.
Single link failures: Figure 4 shows the cumulative
distribution of convergence times of Tesseract and Fast
OSPF for all single link failures in both topologies (Some
convergence times are 0 because the link failure par-
titioned a stub switch and no forwarding state updates
were required). First, consider the enterprise network
scenario where the network propagation delay is negligi-
ble. For Fast OSPF, which represents an ideal target for
convergence time, its performance is primarily a function
of the link failure detection time, which is controlled by
the dead timer value (100 ms), and the time to compute
and install new routes. Even though Tesseract has a sin-
gle DE machine compute all the routes, its performance
is nearly identical to that of Fast OSPF, thanks to the us-
age of an efficient dynamic shortest path algorithm and
the delta encoding of switch configurations. The only ob-
servable difference is that Tesseract’s convergence time
has a slightly larger variance due to the variability of the

0
10
20
30
40
50
60
70
80
90

100

 0 50 100 150 200 250 300 350 400 450 500

F
ra

ct
io

n
of

 E
xp

er
im

en
ts

 (
%

)

Convergence Time (in ms)

Tesseract (single switch failures, enterprise)
Fast OSPF (single switch failures, enterprise)

Fast OSPF (regional failures, backbone)
Fast OSPF (single switch failures, backbone)

Tesseract (regional failures, backbone)
Tesseract (single switch failures, backbone)

Figure 5: CDF of convergence times for single switch
failures and regional failures.

dynamic shortest path algorithm on different failed links.
In the backbone network scenario, propagation delay

becomes an important factor as switch-to-switch RTT
ranges from 1 ms to 250 ms. Tesseract’s convergence
requires the link state update to be transmitted to the DE
and the new switch configurations to be transmitted back
to the switches. On the other hand, Fast OSPF only re-
quires the one-way flooding of the link state update. This
is why Tesseract’s convergence time is roughly a one-
way delay slower than Fast OSPF. In return, however,
the direct control paradigm enabled by Tesseract allows
other control functions, such as packet filtering, to be im-
plemented together with intra-domain routing in a simple
and consistent manner.
Switch failures and regional failures: Next, we exam-
ine the convergence time under single switch failures and
regional failures. To emulate regional failures, we divide
the backbone topology into 27 geographic regions with
each region containing a mean of 7 and a maximum of
26 switches, and we simultaneously fail all switches in a
region.

Figure 5 compares the cumulative distributions of con-
vergence times of Tesseract and Fast OSPF on switch and
regional failures. In the enterprise network, again, the
performance of Tesseract is very similar to that of Fast
OSPF. In the backbone network, the difference between
Tesseract and Fast OSPF is still dominated by network
delay, and both are able to gracefully handle bursts of
network state changes. There are two additional points
to make. First, Fast OSPF has more cases where the con-
vergence time is zero. This is because the 10 ms delay
timer in Fast OSPF is acting as a hold-down timer. As
a result, Fast OSPF does not react immediately to indi-
vidual link state updates for a completely failed switch
and sometimes that can avoid unnecessary configuration
changes. In Tesseract, there is no hold-down timer, so
it reacts to some link state updates that are ultimately
inconsequential. Second, in some cases, Tesseract has
faster convergence time in regional failure than in single

 230

 235

 240

 245

 250

 255

 0 200 400 600 800 1000 1200

IC
M

P
 R

T
T

 (
in

 m
s)

ICMP Sequence Number

Figure 6: Effects of link flapping on ICMP packets sent
at a rate of 100 packets/sec.

switch failure. The reason is that the large number of
failed switches in regional failure reduces the amount of
configuration updates Tesseract needs to send.
Link flapping: From the earliest days of routing in the
Internet there has been concern that a rapidly flapping
link could overload the control plane and cause a wide-
spread outage worse than the failure of that single link.
Using Emulab we conduct an experiment to show the
effects of link flapping on the end-to-end behavior of
Tesseract. On the emulated backbone network, weping
the Tokyo node from the Amsterdam node at an interval
of 10 ms and measure the RTT. We start to flap the link
between Santa Clara and Herndon 2 seconds into the ex-
periment. The flapping link is up for 100 ms and then
down for 2 seconds. As the link flaps, the route from
Tokyo to Amsterdam oscillates between a 10-hop path
traversing Santa Clara, Herndon, Weehawken, and Lon-
don with an average RTT of 240 ms, and a 12-hop path
through San Jose and Oak Brook with an average RTT of
246 ms, as shown in Figure 6.

This experiment demonstrates that a logically central-
ized system like Tesseract can handle continual network
changes. It is also worth mentioning that the Tesseract
decision plane makes it easy to plug in damping algo-
rithms to handle this situation in a more intelligent way.

4.3 Scaling Properties

Another concern with a logically centralized system like
Tesseract is can it scale to size of today’s networks,
which often contain more than 1,000 switches. Since
Emulab experiments are limited in size to at most a few
hundred switches, we perform several simulation exper-
iments to evaluate Tesseract’s scaling properties. This
evaluation uses a DE running the same code and hard-
ware as the previous evaluations, but its dissemination
plane is connected to another machine that simulates the
control plane of the network.

79:147 87:161 108:153 141:393 161:328 315:972 1347:6224

10
−1

10
0

10
1

10
2

S
P

F
 c

om
pu

ta
tio

n
tim

e
(m

s)

Networks (#nodes : # edges)

Figure 7: CPU time for computing incremental short-
est paths for various Rocketfuel topologies in logarithmic
scale. The box shows the lower quartile, upper quartile
and median. The whiskers show the min and max data
values, out to 1.5 times the interquartile range, and out-
liers are plotted as ‘+’s.

We evaluate Tesseract’s scalability on a set of Rock-
etfuel topologies with varying sizes. For each topology,
we independently fail each link in the graph and measure
the time for the DE to compute new forwarding state and
the size of the state updates.
DE Computation Time: Every time a failure occurs in
the network, the decision element needs to recompute
the forwarding tables for the switches based on the new
state of the network. Figure 7 shows the results of DE
path computation time. As shown in the figure, even in
the largest network of 1347 nodes and 6244 edges, the
worst case recomputation time is 151 ms and the 99th
percentile is 40 ms.
Bandwidth Overhead of Control Packets: Each time
the DE computes new forwarding state for a switch, it
needs to push out the new state to the switch. Figure 8
plots the number of control bytes that the DE pushes out
for independent link failures with different topologies.
As shown in the figure, the worst case bandwidth over-
head is 4.4MB in the largest network of 1347 nodes and
6244 edges. This is a scenario where 90% of the switches
must be updated with new state.

Notice that the bandwidth overhead reported here in-
cludes only intra-domain routes. Even when a Tesseract
network carries external BGP routes, the amount of for-
warding state expected to change in response to an in-
ternal link failure will be roughly the same. Switches
use two-level routing tables, so even if default-free BGP
routing tables are in use, the BGP routes only change
when the egress point for traffic changes — not when in-
ternal links fail. As has been pointed out by many [11, 7],
Internet routing stability would improve if networks did
not change egress points solely because the local cost
changed, and Tesseract’s framework for direct control
makes it easier to implement this logic.

79:147 87:161 108:153 141:393 161:328 315:972 1347:6224
10

1

10
2

10
3

10
4

10
5

10
6

10
7

B
yt

e
ov

er
he

ad
 (

by
te

s)

Networks (#nodes : # edges)

Figure 8: Switch configuration traffic sent out on a single
link failure for various Rocketfuel topologies in logarith-
mic scale.

Min Mean Max SD
Backup DE takes over 130 ms 142 ms 155 ms 6 ms

Table 1: Minimum, mean, and maximum times, and
standard deviation for DE failover in DE failure exper-
iments on the backbone network.

4.4 Response to DE Failure and Partition

This section evaluates decision plane resiliency by mea-
suring theDE failover time, defined as the time from
when the master DE is partitioned to when a standby DE
takes over and becomes the new master DE. We use the
backbone network topology and perform 10 experiments
in which the master and stand-by DEs are 50 ms apart.
DE failure: Failure of any DE but the master DE is
harmless, since in Tesseract the other DEs are hot stand-
bys. To evaluate the effect of the failure of the master
DE, we abruptly shutdown the master DE. Table 1 shows
the time required for a new DE to take control of the net-
work after the master DE fails. As expected, the average
failover time is approximately 140 ms, which can be de-
rived from a simple equation that describes the expected
failover time: (DEDeadT ime+PropagationDelay−
HeartbeatInterval/2 = 100ms + 50ms− 10ms).
Network partition: We inject a large number of link
failures into the backbone topology to create scenarios
with multiple network partitions. In the partition with
the original master DE, Tesseract responds in essentially
the same manner as in the regional-failure scenarios ex-
amined in Section 4.2, since the original master DE sees
the partition as a large number of link failures. In the par-
titions that do not contain the original master, the conver-
gence time is the same as when the master DE fails.

Just as network designers can choose to build a topol-
ogy that has the right level of resistance against network
partition (e.g., a ring versus a complete graph), the de-

AF1
AF2

BF1
BF2

R3

Location A

Location B

Data Center

R4

R1 R2

Front Office

i1.1

i1.2

i3.2

i3.1

i4.2

i4.1

i2.1

i2.2

metric=1

metric=1

metric=1 R5

metric=1

metric=1
AD2

AD1

BD1

BD2

Figure 9: Enterprise network with two locations, each
location with a front office and a data center. The dashed
link is added as an upgrade.

signers can intelligently select locations for placing re-
dundant DEs to defend against network partition.

5 Tesseract Applications

In this section, we demonstrate two applications that take
advantage of Tesseract’s direct control paradigm.

5.1 Joint Control of Routing and Filtering

Today, many enterprise networks configure packet fil-
ters to control which hosts and services can reach each
other [9]. Unfortunately, errors in creating network con-
figurations are rampant. The majority of disruptions in
network services can be traced to mis-configurations [12,
13]. The situation with packet filters is especially
painful, as routes are automatically updated by routing
protocols to accommodate topology changes, while there
is no mechanism to automatically adapt packet filter con-
figurations.

The Tesseract approach makes joint routing and filter-
ing easy. The decision logic takes as input a specifica-
tion of the desired security policy, which lists the pairs
of source and destination subnets that should or should
not be allowed to exchange packets. Then, in addition
to computing routes, for each source-destination subnet
pair that is prohibited from communicating, the DE ini-
tially places a packet filter to drop that traffic on the in-
terface closest to the destination. The decision logic then
further optimizes filter placement by pulling the filters to-
wards the source of forbidden traffic and combining them
until further pulling would require duplicating the filters.

As a concrete example, consider the network in Fig-
ure 9. This company’s network is spread across two loca-
tions, A and B. Each location has a number of front office
computers used by sales agents (AF1-2 and BF1-2) and
a data center where servers are kept (AD1-2 and BD1-
2). Initially, the two locations are connected by a link
between the front office routers, R2 and R4, over which
inter-office communications flow. The routing metric for

each link is shown in italics. Later, a dedicated link be-
tween the data centers (shown as a dashed line between
R1 and R3) is added so the data centers can use each
other as remote backup locations. The security policy
is that front-office computers can communicate with the
other location’s front office computers and with the lo-
cal data center’s servers, but not the data center of the
other location. Such policies are common in industries
like insurance, where the sales agents of each location
are effectively competing against each other.

We experimentally compared the Tesseract-based so-
lution with a conventional solution that uses OSPF and
manually placed packet filters. During the experiments
we generate data traffic from AF1 to BF1 (which should
be permitted) and from AF1 to BD1 (which should be
forbidden) at 240 packets per second and monitor for any
leaked or lost packets. In the OSPF network, the filter is
manually placed on interface i3.1 to prevent A’s front of-
fice traffic from reaching BD. After allowing the routing
to stabilize, we add a new link between the data centers
(dotted line in Figure 9). In the OSPF network, OSPF re-
sponds to the additional link by recomputing routes and
redirects traffic from AF to BD over the new link, by-
passing the packet filter on interface i3.1 and creating a
security hole that will have to be patched by a human op-
erator. In contrast, Tesseract computes both new routes
and new packet filter placements appropriate for those
routesand loads into the routers simultaneously, so no
forbidden traffic is leaked. Most importantly, once the
security policy is specified, it is automatically enforced
with no human involvement required.

5.2 Link Cost Driven Ethernet Switching

Ethernet is a compelling layer-2 technology: large
switched Ethernets are often used in enterprise, data cen-
ter, and access networks. Its key features are: (1) a
widely implemented frame format; (2) support for broad-
casting frames, which makes writing LAN services like
ARP, and DHCP significantly easier; and (3) its trans-
parent address learning model, which means hosts can
simply plug-and-play. Unfortunately, today’s Ethernet
control plane is primitive [14, 15, 16]. Based on routing
frames along a spanning tree of the switches, it makes
very inefficient use of the available links. Convergence
time in response to failures can be long, as the IEEE
802.1D Rapid Spanning Tree Protocol (RSTP) is known
to count to infinity in common topologies.

We have implemented a Tesseract control plane for
Ethernet that preserves all three beneficial properties,
avoids the pitfalls of a distributed spanning tree proto-
col, and improves performance. The DE first creates
a spanning tree from the discovered network topology
and generate default forwarding entries for the switches

H1

H3

H2

S3 S4

S1 S2

H4

Figure 10: Full-mesh Ethernet topology.

 0

 100

 200

 300

 400

 500

 600

 50 55 60 65 70 75 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

RSTP
Tesseract

Figure 11: Aggregate network throughput, RSTP versus
Tesseract. S1 fails at 60 second.

that follow the tree — this enables traditional tree-based
broadcast. Additionally, when an end host sends its first
frame to its first-hop switch, the switch notifies the DE
of the newly discovered end host via the dissemination
service. The DE then computes appropriate paths from
all switches to that end host and adds the generated for-
warding entries to the switches. From then on, all frames
destined to the end host can be forwarded using the spe-
cific paths (e.g., shortest paths) instead of the spanning
tree.

To experimentally illustrate the benefits of the Tesser-
act approach, we use the topology shown in Figure 10 on
Emulab. The four switches are connected by 100 Mbps
Ethernet links, and each end host is connected to one
switch via a 1 Gbps Ethernet link. We runiperf [17]
TCP servers on the four end hosts and simultaneously
start six TCP flows. They are H1 to H2, H1 to H3, H1
to H4, H2 to H3, H2 to H4, and H3 to H4. In the first
experiment, the network is controlled by Tesseract using
shortest path as the routing policy. In the second experi-
ment, the network is controlled by an implementation of
IEEE 802.1D RSTP on Click.

Figure 11 shows the aggregated throughput of the net-
work for both experiments. With the Tesseract control
plane, all six TCP flows are routed along the shortest
paths, and the aggregate throughput is 570 Mbps. At
time 60 s, switch S1 fails and H1 is cut off. The Tesser-
act system reacts quickly and the aggregate throughput
of the remaining 3 TCP flows stabilizes at 280 Mbps. In
contrast, in a conventional RSTP Ethernet control plane,

S2 S3 S4

S5 S6

S1
����
����
����
����

����
����
����
����

H4H2 H3

R

Figure 12: Typical Ethernet topology gadget.

forwarding is performed over a spanning tree with S1 as
the root. This means the capacities of the S2-S3, S2-
S4, and S3-S4 links are totally unused. As a result, the
aggregate throughput of the RSTP controlled network is
only 280 Mbps, a factor of two less than Tesseract. When
switch S1 fails at time 60 s, RSTP tries to reconfigure the
spanning tree to use S2 as the root and begins a count-to-
infinity. The combination of frame loss when ports oscil-
late between forwarding/blocking state and TCP conges-
tion control back-off means the throughput does not re-
cover for many seconds. When RSTP has finally recon-
verged, the aggregate throughput is again substantially
less than the Tesseract network.

As a second example of the value of being able to
change the decision logic and the ease with which Tesser-
act makes this possible, consider Figure 12. This topol-
ogy gadget is a typical building block found in Ethernet
campus networks [18] which provides protection against
any single link failure. Basic Ethernet cannot take advan-
tage of the capacities of the redundant links since RSTP
forms a spanning tree with S1 as the root, and the S2-S6,
S3-S6, and S4-S6 links only provide backup paths and
are not used for data forwarding. As a result, traffic flows
from H2, H3, and H4 to R must share the capacity of link
S1-S5. In contrast, when there exists two or more equal
cost paths from a source to a destination, the Tesseract
decision logic breaks the tie by randomly picking a path.
By centralizing the route computations and using even
such simple load-balancing heuristics, Tesseract is able
to take advantage of the multiple paths and achieve a
substantial increase in performance. In our example, the
capacities of both link S1-S5 and S1-S6 are fully utilized
for a factor of two improvement in aggregate throughput
over RSTP.

The examples in this section illustrate the benefit of the
direct control paradigm, where the only distributed func-
tions to be implemented by network switches are those
that discover the neighborhood status at each switch and
those that enable the control communications between
the DE and the switches. As a result, it becomes easy
to design and change the decision logics that control the
network. There is no need to design distributed protocols
that attempt to achieve the desired control policies.

6 Related Work

Previous position papers [19, 3] have laid down the
conceptual framework of 4D, and this paper provides
the details of an implementation and measured perfor-
mance. The Routing Control Platform (RCP) [7, 20]
and the Secure Architecture for the Networked Enter-
prise (SANE) [21] are the most notable examples that
share conceptual elements with 4D.

RCP is a solution for controlling inter-domain routing
in IP networks. RCP computes the BGP routes for an
Autonomous Systems (AS) at centralized servers to give
the operators of transit networks more control over how
BGP routing decisions are made. The RCP servers have
a very similar role as the decision plane in 4D. For back-
ward compatibility, the RCP servers use iBGP to com-
municate with routers. This iBGP communication chan-
nel has a role similar to the dissemination plane in 4D.

SANE is a solution for enforcing security policies in
an enterprise network. In a SANE network, communica-
tions between hosts are disabled unless they are explic-
itly allowed by the domain controller. Switches only for-
ward packets that have authentic secure source routes at-
tached to them. For communications between switches
and the domain controller, SANE constructs a spanning
tree rooted at the domain controller. This spanning tree
has a role similar to the dissemination plane in Tesseract.

Tempest [22] proposes an alternate framework for net-
work control, where each switch is divided into switch-
lets and the functionality of each switch is exposed
through a common interface called Ariel. Tempest al-
lows multiple control planes to operate independently,
each controlling their own virtual network composed
of the switchlets, and the framework has been used on
both MPLS and ATM data planes. Tesseract’s dissem-
ination plane provides a complete bootstrap solution,
where Tempest’s implementation assumed a pre-existing
IP-over-ATM network for communication with remote
switches. While both projects abstract switch functional-
ity, Tesseract does not assume that switches can be fully
virtualized into independent switchlets, and it leaves re-
source allocation to the decision logic.

FIRE [23] presents a framework to ease the imple-
mentation of distributed routing protocols by providing
a secure flooding mechanism for link-state data, hooks
to which route computation algorithms can be attached,
and a separate FIB used for downloading code into the
router. Tesseract eases the implementation of centralized
network control algorithms by assembling a network-
wide view, enabling direct control via a robust and self-
bootstrapping dissemination plane, and providing redun-
dancy through the election of DEs.

7 Summary

This paper presents the design and implementation of
Tesseract, a network control plane that enables direct
control. In designing Tesseract, we paid particular at-
tention to the robustness of the decision plane and the
dissemination plane. The security of Tesseract is en-
hanced by the mechanisms built into the dissemination
service. The system is designed to be easily reusable
and we demonstrated how Tesseract can be used to con-
trol both Ethernet and IP services. Finally, good perfor-
mance is achieved by adopting efficient algorithms like
incremental shortest path and delta encoding of switch
configuration updates.

We find that Tesseract is sufficiently scalable to control
intra-domain routing in networks of more than one thou-
sand switches, and its reconvergence time after a failure
is detected is on the order of one round-trip propagation
delay across the network.

The most important benefit of Tesseract is that it en-
ables direct control. Direct control means sophisticated
control policies can be implemented in a centralized
fashion, which may be much easier to understand and
deploy than a distributed protocol. Direct control also
means the software running on each switch is simplified,
with potential benefits for operators and vendors. We
strongly believe that the direct control paradigm is the
right approach in the long run, as there is a clear trend to-
wards ever more sophisticated network control policies.
Acknowledgments

Andy Myers contributed greatly to the early stages
of this project, and we would like to thank the anony-
mous reviewers and our shepherd Jon Crowcroft for
helpful feedback on earlier versions of the paper. This
research was sponsored by the NSF under ITR Awards
ANI-0085920, ANI-0331653, and NeTS Grant CNS-
0520187. Views and conclusions contained in this doc-
ument are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of Microsoft, NSF, or the U.S. gov-
ernment.

References

[1] A. Shaikh and A. Greenberg, “Operations and management of IP
networks: What researchers should know,” August 2005. ACM
SIGCOMM Tutorial.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An integrated
experimental environment for distributed systems and networks,”
in Proc. Operating Systems Design and Implementation, pp. 255–
270, December 2002.

[3] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rex-
ford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D
approach to network control and management,”ACM Computer
Communication Review, October 2005.

[4] C. Demetrescu and G. F. Italiano, “A new approach to dynamic all
pairs shortest paths,”J. ACM, vol. 51, no. 6, pp. 968–992, 2004.

[5] A. Shamir, “How to share a secret,”Communications of the ACM,
vol. 22, no. 1, pp. 612–613, 1979.

[6] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “In-
ternet Security Association and Key Management Protocol
(ISAKMP).” RFC 2048, November 1998.

[7] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and
J. van der Merwe, “The case for separating routing from routers,”
in Proc. ACM SIGCOMM Workshop on Future Directions in Net-
work Architecture, August 2004.

[8] N. Spring, R. Mahajan, and D. Wetheral, “Measuring ISP topolo-
gies with RocketFuel,” inProc. ACM SIGCOMM, August 2002.

[9] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and
A. Greenberg, “Routing design in operational networks: A look
from the inside,” inProc. ACM SIGCOMM, August 2004.

[10] “Quagga Software Routing Suite.”
http://www.quagga.net.

[11] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of
hot-potato routing in IP networks,” inProc. ACM SIGMETRICS,
June 2004.

[12] Z. Kerravala, “Configuration management delivers business re-
siliency.” The Yankee Group, Nov 2002.

[13] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why dointer-
net services fail, and what can be done about it,” inProc. USENIX
Symposium on Internet Technologies and Systems, 2003.

[14] A. Myers, T. S. E. Ng, and H. Zhang, “Rethinking the service
model: Scaling Ethernet to a million nodes,” inProc. HotNets,
November 2004.

[15] R. Perlman, “Rbridges: Transparent routing,” inProc. IEEE IN-
FOCOM, March 2004.

[16] K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “On count-to-infinity
induced forwarding loops in ethernet networks,” inProc. IEEE
INFOCOM, 2006.

[17] “Iperf – The TCP/UDP Bandwidth Measurement Tool.”
http://dast.nlanr.net/Projects/Iperf.

[18] “Gigabit campus network design – principles and architecture.”
Cisco White Paper.

[19] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, G. Xie, J. Zhan, and H. Zhang, “Network-wide decision
making: Toward a wafer-thin control plane,” inProc. HotNets,
pp. 59–64, November 2004.

[20] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
Jacobus van der Merwe, “Design and implementation of a Rout-
ing Control Platform,” inProc. NSDI, May 2005.

[21] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: A protection architecture
for enterprise networks,” inUsenix Security, August 2006.

[22] S. Rooney, J. van der Merwe, S. Crosby, and I. Leslie, “The
Tempest: a framework for safe, resource assured, programmable
networks,”IEEE Communications Magazine, vol. 36, pp. 42–53,
Oct 1998.

[23] C. Partridge, A. C. Snoeren, T. Strayer, B. Schwartz, M.Condell,
and I. Castineyra, “FIRE: flexible intra-AS routing environment,”
in Proc. ACM SIGCOMM, 2000.

