Tesseract: A 4D Network Control Plane

Hong Yan, David A. MaltZ, T. S. Eugene NgHemant Gogineij Hui Zhang, Zheng Cdi
fCarnegie Mellon University *Microsoft Research ®Rice University

Abstract example, load balanced best-effort forwarding may be
, implemented by carefully tuning OSPF link weights to

We presept Tesseract, an experimental systeml that e'ﬂidirectly control the paths used for forwarding. Inter-

ables thalirect controlof a computer network that is un- domain routing policy may be indirectly implemented by

der a single administrative domain. Tesseract's desiggemng OSPF link weights to change the local cost met-
is based on the 4D architecture, which advocates the deﬁc used in BGP calculations. The combination of such

composition of the network control plane indecision

. SR indirect mechanisms create subtle dependencies. For in-
disseminationpdiscoveryanddataplanes. Tesseract pro-

) X X i stance, when OSPF link weights are changed to load bal-
vides two primary abstract services to enable direct CON3nce the traffic in the network, inter-domain routing pol-

troI:_ the d|ss_,em|nat|on servicthat carries opaque con- icy may be impacted. The outcome of the synthesis of
trol information from the network decision element to the ;

. ! _ ; indirect control mechanisms can be difficult to predict
nodes in the network, and tiede configuration service ;.4 exacerbates the complexity of network control [1].

which provides the mt_erface for the decision elementto 1 - qiract control paradigm avoids these problems be-
command the nodes in the network to carry out the de-

. - cause it forces the dependencies between control policies
sired control _poI|C|e_s. . . to become explicit. In direct control, a logically central-
'_I'esserac_t IS deS|gn_ed o _enaple easy |nn0vat|or_1. Thﬁed entity called the decision element is responsible for
neighbor discovery, dissemination and node COnf'guraéreating all the state at every switch. As a result, any con-

tion services, which are agnostic to network control pOII'ﬂicts between the policy objectives can be detected at the

ct;es, a.rehthe (cj)nly d's”'t?“ted ;‘unctloni |mpler|nen|t.e<.j 'Mtime of state creation. With today’s multiple independent
the switch nodes. A variety of network control policies 54 istriputed mechanisms, these conflicts often only

can be implemented outside of switch noaéthoutthe appeaiin vivo after some part of the configuration state

need for introducing new distributed protocols. Tesser-has been changed by one of the mechanisms
act. also minimizes the need for manual node conflgu-, The direct control paradigm also simplifies the switch
rations to reduce human errors. We evaluate Tesserathﬁnctionality Because algorithms making control de-
responsiven_ess androbustness .Whe.n applied to backb(_)& ions are ﬁo longer run at switches, the only distrib-
?Q:m(aen;frmzefingcgtk;gg;?ggsislnretgiﬁei?]tl:)la::t:)rimg:med functions to be implemented by switches are those
. : ) -OMPO3 ot discover the neighborhood status at each switch and
nent failures. Its responsiveness for intra-domain routs S
: ; - those that enable the control communications between
ing control is sufficiently scalable to handle a thousandthe decision element and the switches. Thus. the switch
nodes. Moreover, we demonstrate Tesseract’s ﬂeXib“itysoftware can be very light-weight Yét sop’histicate d
by showing its application in joint packet forwarding and control algorithms can be easily irﬁplem,ented with this
policy based filtering for IP networks, and in link-cost minimal set of distributed functions
driven Ethernet packet forwarding. . . .

P g The Tesseract (a tesseract is a 4-dimensional cube)
system is based on the 4D architecture that advocates the
1 Introduction decomposition of the network control plane into theei-

sion, disseminationdiscovery anddataplanes. Tesser-

We present Tesseract, an experimental system that eact implements two services to enable direct control:
ables thedirect control of a computer network that is Dissemination service: The dissemination service pro-
under a single administrative domain. The term directvides a logical connection between decision element and
control refers to a network control paradigm in which a network switch nodes to facilitate direct control. The
decision elemendirectly and explicitly creates the for- dissemination service only assumes network nodes are
warding state at the network nodes, rather than indirectlypre-configured with appropriate keys and can discover
configuring other processes that then compute the forand communicate with direct physical neighbors. The
warding state. This paradigm can significantly simplify dissemination service thus enables plug-and-play boot-
network control. strapping of the Tesseract system.

In a typical IP network today, the desired control pol- Node configuration service: The node configuration
icy of an administrative domain is implemented via the service provides an abstract packet lookup table interface

synthesis of several indirect control mechanisms. Fothat hides the details of the node hardware and software



Data plane: The data plane operates in network switches
and provides user services such as IPv4, IPv6, or Eth-
ernet packet forwarding. The actions of the data plane
are based on the state in the switches, and this state
is controlled solely by the decision plane. Example
state in switches includes the forwarding table or for-
warding information base (FIB), packet filters, flow-
scheduling weights, queue-management parameters, tun-
nels and network address translation mappings, etc. The
arrow in the figure represents an end-to-end data flow.

Discovery plane:Each switch is responsible for discov-

Decision Plane

ﬁmis‘"” Element ering its hardware capabilities (e.g., what interfaces are
Neighbor . . . . ) H
Network m on this switch and what are their capacities? How many
@M FIB entries can the switch hold?) and its physical con-
R Switch End Host nectivity to neighboring switches. A border switch ad-
jacent to a neighboring network is also responsible for
Figure 1: The 4D architectural concepts. discovering the logical connectivity to remote switches

. _ that are reachable via that neighbor network (in today’s
from the decision element. Each table entry contains & i-onment. this may be implemented by an eBGP ses-
packet matching rule and the corresponding control acgjq ) The dotted arrows in the figure represent the local
tions. The decision elementissues commands to the noq&, j,mnications used for discovering connectivity. The
configuration service through the logical connection prosiy s rmation discovered is then reported to the decision

V'ded_ by the dissemination Service. . element in the decision plane via the logical connections
This paper presents the design, implementation, eV‘?‘Ir'naintained by the dissemination plane. The solid ar-

uation, and demonstration of the Tesseract system. Tg, s in the figure represent these reporting activities. For

guide our design, we explicitly select a set of goals and, ;. \yard compatibility, end hosts do not explicitly par-
devise solutions to address them. We deploy Tessera%ipate in the discovery plane.

on Emulab [2] to evaluate its performance. We show,.. oL ] . S .
Dissemination plane: The dissemination plane is re-

how Tesseract can rapidly react to link, node, and de- . L .
. . . : sponsible for maintaining robust logical channels that
cision element failures and efficiently re-configure net-

: . . carry control information between the decision element
work switches in response. Also, micro-benchmark ex- . . )

. : and the network switches. The arrows in the figure repre-
periments show that the system can easily handle the

. ; ) Sent the paths used by the logical channels. While control
intra-domain routing control for a thousand-node net-. ; . .
: . information may traverse the same set of physical links
work. We then demonstrate Tesseract’s flexibility by . ; Lo
Lo o L : as the data packets in the data plane, the dissemination
showing its applications in joint packet forwarding and

policy based filtering in IP networks, and in link cost paths are maintained separately from the data paths so
. : ' they can be operational without requiring configuration
driven Ethernet packet forwarding.

or successful establishment of paths in the data plane. In

contrast, in today’s networks, control and management

2 From the 4D Architecture to Tesseract information is carried over the data paths, which need
Design Goals to be established by routing protocols before use. This

creates a circular dependency.

This section explains the key concepts in the 4D architecbecision plane: The decision plane consists of a log-

ture. Since the 4D architecture describes a very large deeally centralized decision element that maldisdeci-

sign space, we present the design goals we used to guidéons driving network control, such as reachability, load

our design of the specific Tesseract system. balancing, access control, and security. The decision
element makes use of the information gathered by the
2.1 The 4D Architectural Concepts discovery plane to make decisions, and these decisions

are sent as commands to switches via the dissemination
The 4D architecture advocates decomposing the networglane (shown as arrows in the figure). The decision ele-
control plane into four conceptual componemtscision ~ ment commands the switches using the node configura-
disseminationdiscovery anddata planes. These con- tion service interface exposed by the network switches.
ceptual components are illustrated in Figure 1 and ar&Vhile logically centralized as a single decision element,
explained below. For an in-depth discussion of the 4Din practice multiple redundant decision elements may be
architecture, please refer to [3]. used for resiliency.



2.2 Tesseract Design Goals Decision

network-level objectivg Tnewk

wide
view

Switch

config [Rosilienciearteat  Other

Tesseract is based on the general 4D architectural con- — Decision Elements
cepts, but these concepts admit a wide variety of design Dissemination

choices. We used the following goals to guide our deci- ion foven | B

sions while designing Tesseract, and these goals can be  __ _DecisionElement | |

Hello_ Other

Switches

host information information

Switch™"
config

roughly grouped into three categories. The first category Switeh HOst | Dissemination | S¥h_ |
concerns system performance and robustness objectives: [ rost [

Timely reaction to network changes:Planned and un-
planned network changes, such as switch maintenance M i)
and link failures, can cause traffic disruption. Tesseract Cick | [Linux

should be optimized to react to network changes quickly gwféﬂiﬂ L‘Z,,wardml
and minimize traffic disruption.

Resilient to decision plane failure: Tesseract should
provide built-in support for decision plane redundancy
so that it can survive the failure of a decision element.

Robust and secure control channelsThe logical chan-  The Tesseract system is composed of two applications
nels for control communications maintained by Tesseracimplemented on Linux. These applications are called the
should continue to function in the presence of compro-Swi t ch and the Decision ElemenbE). Figure 2 illus-
mised switches, decision elements or failed links/nodestrates the software organization of these applications.

The next set of goals concern making Tesseract easy The discovery plane implementation currently deals
to deploy: only with neighbor node discovery. It includes two mod-

Minimal switch configuration: The Tesseract software Ules, one for discovering hosts connected to the switch
prior to deployment except for security keys that identify discovery module exchanges hello messages with neigh-
the switch. We do, however, assume that the underlyin@or switches to detect them, and creates Link State Ad-

switch allows Tesseract to discover the switch’s proper_vertisements (LSAS) that contain the status of its inter-

ties at run-time. faces and the identities of the switches connected to the
interfaces. The generated LSAs are reporteBEovia

the dissemination plane. To avoid requiring changes to
Iinl'osts, the discovery plane identifies what hosts are con-
Thus, Tesseract can be deployed as the network contr%ected to a switch by snooping the MAC and IP ad-

system transparently to the end users. dresses on packets received on the interfaces that are not

The final set of goals concerns making Tesseract & onnected to another switch.
flexible platform: The dissemination plane is cooperatively implemented
Support diverse decision algorithms:Tesseract should by bothSwi t ch andDE. The dissemination service is
provide a friendly platform on which diverse algorithms realized by a distributed protocol that maintains robust
can be easily implemented to control networks. logical communication channels between the switches
Support multiple data planes: Tesseract should sup- and decision elements.
port heterogeneous data plane protocols (e.g., IP or Eth- Swi t ch leverages existing packet forwarding and fil-
ernet). Thus, the system should not assume particuering components to implementthe data ple®w. t ch
lar data plane protocols and the dissemination servicénteracts withDE in the decision plane through the node
should be agnostic to the semantics of the control comeonfiguration service interface. The interface is imple-
munications. mented by data plane drivers, which translate generic
configuration commands fromE into specific config-
urations for the packet forwarding and filtering compo-
nents.

DE implements the discovery, dissemination and de-
cision planes. The discovery and dissemination plane
In this section, we present the design and implementafunctions are as outlined above. The decision plane con-
tion of Tesseract. We first provide an overview of the structs an abstract network model from the information
software architecture, and then discuss each componergported by the switches and computes switch configura-
of the system in detail. tion commands for all the switches based on the specific

Linux
Packet
Filtering|

Figure 2: High-level overview of Tesseract.

3.1 System Overview

Backward compatibility: Tesseract should require no
changes to the end host software, hardware, or protocol

3 Design and Implementation of Tesseract



Spanning Tree Algorithm Filter Placement Algorithm
Shortest Path Algorithm Load Balancing Algorith

Efficient network event processing: The DE must ef-
ficiently handle multiple simultaneous network changes,
which the DE will receive as events communicated over

Operate on network model

. N the dissemination plane. We chose a different event

[ [ Etement |-~{ interface F— interface ]| Element | } processing architecture than that used in typical imple-

l Mep modelto ﬁeeneme etwork model mentation of OSPF, where a hold-down timer is used to

representations delay the start of route recomputation after an event ar-

L rives to force the batching of whatever events arrive dur-
' ing the hold-down window.

[P configs | [ Ethemet configs |

Instead, the Tesseract DE usegush timer The DE

. runs a decision thread that processes all queued events
Figure 3: The network model separates general purposg P 9

. o X t0 update the network-wide view, starts the push timer
algorithms from network specific mechanisms. : . . . .

as a deadline for pushing out new switch configuration

decision algorithm used. The computed switch Comcigu_commands, and then enters its computation cycle. After

ration commands are sent to the switches via the dissenfl'® compution of new forwarding state finishes, the DE
ination service. willimmediately push out the new commands if the push

timer has expired, if the event queue is empty, or if the
queued events do not change the network-wide view used
3.2 Decision Plane: Versatility, Efficiency in the computation. Otherwise, the DE will dequeue all
and Survivability pending events and re-compute.
We use a push timer instead of a fixed hold-down timer
The decision plane implements a platform for the deployfor two reasons. In the common case where a single link
ment of network control algorithms. In addition, it im- fails, the push timer avoid unnecessary waiting. The first
plements mechanisms that enable the replication of theSA announcing the failure starts the route recomputa-
decision logic among multiple decision elements (DESs)tion, and subsequent LSAs announcing the same failure
so that DE failures can be tolerated. do not change the network-wide view and so are ignored.
Support diverse network control algorithms: In de-  Inthe less common case of multiple failures, a push timer
signing the decision plane, our focus is not to hard-wiremay result in recomputation running more than once for
sophisticated network decision logics into the systemthe same event. However, since recomputation has la-
Instead, our goal is to make the decision plane a friendlytency on the same order as typical hold-down timers and
platform where any network control algorithm can be DEs are unlikely to be CPU-limited, it is reasonable to
easily integrated and used to control any suitable networkrade off extra computation for faster reconvergence.
technology. Towards this end, we introduce an abstract The DE also records the state that has been pushed
network model to separate generic network control algoto each switch and uses delta-encoding techniques to re-
rithms (e.g., shortest path computation, load balancingyluce the bandwidth required for sending configuration
from network specific mechanisms (e.g., IP, Ethernet). commands to the switches. Acknowledgments between
Figure 3 illustrates the abstract network model. TheDE and the node configuration service on each switch
model consists of node element and link interface ob-ensure the delta-encoded commands are received.
jects, and is constructed from information discoveredProvide decision plane resiliency:Our decision plane
and reported by switches (e.g. LSA) through the dis-copes with DE failures using hot-standbys. At any time a
semination service. Operating on this model, Tessersingle master DE takes responsibility for configuring the
act currently implements four generic algorithms: in- network switches, but multiple DEs can be connected to
cremental shortest path, spanning tree, joint packet filthe network. Each standby DE receives the same infor-
ter/routing (Section 5.1), and link-cost-based traffic en-mation from the switches and performs the same compu-
gineering (Section 5.2). Finally, technology-specific tations as the master. However, the standby DEs do not
plug-ins translate the general control decisions into netsend out the results of their computations.
work specific configuration commands that are sent to The master DE is selected using a simple leader elec-
switches via the dissemination service. These commandson protocol based on periodic DE heartbeats that carry
are then processed by the node configuration service aptally ordered DE priorities. Each DE has a unique pri-
individual switches. ority, and at boot time it begins flooding its priority with
As an example, we implement an incremental shortesa heartbeat message every heartbeat period (e.g., 20 ms).
path algorithm [4] on the abstract network model, and theEach DE listens for heartbeats from other DEs for at least
same code can be used to generate either IP routing tabliee times the heartbeat period (we assume that 5 times
in IP networks or Ethernet forwarding entries in Ethernet.heartbeat period will be greater than the maximum la-



tency of a packet crossing the network). After this wait- switch, gaining full control over it including the abilitgt
ing period, the DE that has the highest priority among allchange the way dissemination packets are forwarded; (2)
received heartbeats decides to be the master and begiAscompromised switch can piggyback data on packets to
sending commands to switches. When the master DE rezollude with other compromised switches downstream;
ceives a heartbeat from a DE with a higher priority than(3) A compromised switch can peek into dissemination
its own, it immediately changes into a standby DE andplane data to try to learn the network topology or loca-
ceases sending commands to switches. A DE also pertion of critical resources; and (4) Adversaries can com-
odically floods a path explorer message, which has th@romise a DE and use it to install bad forwarding state
effect of triggering switches to reply with their current on the switches.
state. In this way, a new DE can gather the latest switctBootstrapping security: The Tesseract trust model is
state. Switches simply process commands from any DEbased on aetwork certificatg(i.e., a signed public key
Authentication is handled by the dissemination plane andor the network) — all the other keys and certificates are
is discussed next. derived from the network certificate and can be replaced
while network continues operating. Switches will accept
3.3 Dissemination Plane: Robustness and commands from any DE holding a DE certificate that is
Securit signed by th.e.netW(.)rk certificate. The private key of the
y network certificate is secret-shared [5] among the DEs,

The goal of the dissemination plane is to maintain robusf0 that any quorum of DEs can cooperate to generate a
and secure communication channels between each DEeW DE certificate when needed.
and the switches. With respect to robustness, the dissem- When a switch is first deployed, the network certifi-
ination plane should remain operational under link andcate and a DE certificate are installed into it. This is
node failure scenarios. With respect to security, the netdone by plugging a USB key containing the certificates
work should remain operational when a switch or even anto each switch or as part of the default factory config-
DE is compromised. uration of the switch before it is deployed in the field.
Observing that the traffic pattern in dissemination The switch then constructs a DevicelD, which can be as
plane is few-to-many (switches communicate not withsimple as a randomly generated 128-bit number, and a
each other, but only with the DEs), we adopt an asym-private/public key pair. The switch stores the network
metric design where the dissemination module at a DEand DE certificates, its DevicelD, and its key pair into
node implements more functionality than the disseminanonvolatile memory. The switch then encrypts the in-
tion module at a switch. formation with the public key of the DE, and writes it
Dissemination plane design overviewTesseract's dis- back onto the USB key. When the USB key is eventu-
semination plane is implemented using source routesd!ly inserted into a DE, the DE will have a secret chan-
Each control message is segmented into disseminatiofe! to each device and a list of the valid DevicelDs. As
frames, and each frame carries in its header the iderfach switch communicates with a DE for the first time, it
tity of the source, destination, and the series of switchesises ISAKMP [6] and its private/public keys to establish
through which it must pass. We choose a source routd shared-secret key known only by that switch and the
ing solution because: (1) It requires the minimal amountDE. All subsequent dissemination plane operations use
of routing state and functionality in each switch. EachsSymmetric cryptography.
switch needs only to maintain the routes to the DEs. (2)Computing dissemination plane routes: Dissemina-
Source routes provide very flexible control over routing, tion plane routes are computed by each decision element
as a different path can be specified for each destinatiorflooding a path explorer message through the network.
making it easy to take advantage of preferred paths sugFo ensure fast recovery from link failures, the path ex-
gested by the decision plane. (3) Combining source routplorer is sent periodically every 20 ms in our prototype,
ing with the few-to-many communication pattern enableand can be triggered by topology updates.
us to design a dissemination plane with desirable secu- Onion-encryptiorfor encapsulated encryption)is used
rity properties, as discussed below. To protect controin path explorers to support dissemination security. The
communications from user data traffic, the queuing ofDE initiates the path explorer by embedding its DevicelD
dissemination frames is separate from user data traffias the source route and flooding it over all its ports. When
and dissemination frames have higher transmission pria switch receives the path explorer, it (1) optionally veri-
ority. To protect the source-routes from being misusedies the route to the DE contained in the path explorer; (2)
by adversaries inside the network, we encrypt them atecords the source route; (3) encrypts the existing source
each hop before they are forwarded. route using the secret key it shares with the DE that sent
Threat model: Tesseract is designed to cope with thethe path explorer; (4) appends its own DevicelD to the
following threats: (1) Adversaries can compromise apath explorer in plain text; and (5) floods the path ex-



plorer out its other interfaces. Path explorers carry setity or connectivity of another switch that is two or more
guence numbers so that switches can avoid unnecessangps away. This prevents attackers from identifying and
re-flooding. targeting critical resources in the network.

To send data to a DE, a switch uses the encrypted The cost of the extra security benefits provided by ver-
source route it recorded from a path explorer sent by thaifying source routes is the extra latency during recon-
DE. When an upstream switch receives the message, Vtergence of the dissemination plane. If a link breaks
decrypts the source-route using its secret key. This reand a switch receives path explorers over a source route
veals the ID of the next hop switch along the path to theit has not previously verified, it must wait a round-trip
DE. By successive decryption of the source route by theime for the verification to succeed before the switches
on-route switches, dissemination plane packets are detownstream can learn of the new route to the DE. One
livered to the DE. Since the DE knows the secret-key ofapproach to minimize this penalty is for the DE to pre-
every switch, it can construct an onion-encrypted routepopulate the verified source route tables of switches with
to any switch it desires. the routes that are most likely to be use in failure sce-

As part of the negotiation of its secret key over narios. A triggered path explorer flooded by the DE in
ISAKMP, each switch learns whether it is required to response to link failure will then quickly inform each
perform the optional source route verification in step (1)switch which preverified routes are currently working.
before forwarding a path explorer. If verification is re- Surviving DE compromise: As a logically central-
quired, the switch first checks a cache of source routeized system, if a DE were compromised, it could order
from that DE to see if the source route has already beeswitches to install bad forwarding state and wreck havoc
verified. If the source route is not known to be valid, theon the data plane. However, recovery is still possible.
switch forwards the source route to the DE in a signedOther DEs can query the forwarding state installed at
VERIFY packet. Since the DE knows the secret keyseach switch and compare it to the forwarding state they
of all the switches, it can iteratively decrypt the sourcewould have installed, allowing a compromised or misbe-
route and verify that each hop corresponds to link it hashaving DE to be identified. Because the private key of
learned about in an LSA. Once verified, the DE sendghe network certificate is secret-shared, as long as a quo-
a VERIFYOK message to the switch using the extractedrum of DEs remain uncompromised they can generate a
source route, confirming the validity of the route. The new DE certificate and use the dissemination plane to re-
DE confirmation is signed with a HMAC computed us- motely re-key the switches with this new DE certificate.
ing the secret key of the destination switch to prevent it Notice that while a compromised DE can totally dis-
from being tampered or forged. rupt data plane traffic, tannotdisrupt the dissemination
Security properties: The optional verification step ex- traffic between other DEs and the switches. Thisis one of
poses a classic trade-off between security and perfoithe benefits of having control traffic traversing a secured
mance. In Tesseract, we provide a dissemination plangissemination plane that is logically separate from paths
with two different levels of security. The network opera- traversed by data packets. Once re-keyed, the switches
tor can choose the semantics desired. will ignore the compromised DEs.

The basic security property is that a compromised As a point of comparison, in today’s data networks re-
switch cannot order other switches to install invalid for- covering from the compromise of a management station
warding state or forge LSAs from other switches. This isis hard as the compromised station can block the uncom-
achieved by each switch having a secret key shared onlgromised ones from reaching the switches. At the level
with the DE. of the control plane, the security of OSPF today is based

If path explorers arenot verified before being for- on a single secret key stored in plain-text in the configu-
warded, a compromised switch can forge path explorergation file. If any switch is compromised, the key is com-
that artificially shorten its distance to the DE and attractpromised, and incorrect LSAs can be flooded through the
dissemination plane traffic from other switches (e.g., smetwork. The attacker could then DoS all the switches by
the attacker can drop or delay the traffic). Compromisedorcing them to continuously rerun shortest path compu-
switches can also communicate with each other over theation or draw traffic to itself by forging LSAs. Since
dissemination plane to coordinate attacks. a distributed link-state computation depends on all-to-al

If path explorersare verified before being forwarded, communications among the switches, one alternative to
a compromised switch cannot lie about its distance tausing a single shared key is for each switch to negotiate
the DE. Also, compromised switches are prevented frona secret key with every other switch. Establishing this
communicating arbitrarily over the dissemination planeO(n?) mesh of keys requires every switch to know the
unless they are directly connected. This is because thpublic key of every other switch. Both key establishment
DE will not validate a source route that originates andand revocation are more complex when compared to the
ends at switches. A switch also cannot discover the idendirect control paradigm of Tesseract.



3.4 Discovery Plane: Minimizing Manual In networks operating as a switched Ethernet LAN,

Configurations the discovery plane of a switch reports the MAC address
and the connection point of a newly appeared end host

The discovery plane supports three categories of activito the DE. The DE then configures the network switches

ties: (1) providing the DE with information on the state appropriately to support the new host. Section 5.2 de-

of the network; (2) interacting with external networks scribes how we use Tesseract to control a switched Eth-

and informing the DE of the external world; and (3) boot- ernet LAN and provide enhancements.

strapping end hosts into the network.

Gathering local information: Since misconfigurationis . .
the source of many network outages, the 4D architec:tur<§'5 Data Plane: Support Heterogeneity

eliminates as much manually configured state as possirhe data plane is configured by the decision plane via
ble. In the long term vision, the switch hardware shouldihe node configuration service exposed by the switches.
self-describe its capabilities and provide run-time infor Tesseract abstracts the state in the data plane of a switch
mation such as traffic load to the discovery plane. Theys a |ookup table. The lookup table abstraction is quite
current Tesseract imp_lementati_on supports the discoveryeneral and can support multiple technologies such as
of physical switch neighbors via periodicEHLO mes-  the forwarding of IPv4, IPv6, or Ethernet packets, or the
sage exchanges. Switches are identified by the same D@jnneling and filtering of packets, etc.

vicelD used in the dissemination plane. Tesseract's data plane is implemented using existing
InteraCting with external networks: The DE directs Linux kernel and Click components. For each com-
the border switches that peer with neighbor network%onent, we provide a driver to interface the compo-
to begin eBGP sessions with the neighbor switchespent with the Tesseract decision plane as shown in Fig-
Through this peering, the DE discovers the destinationgre 2. The drivers model the components as lookup
available via the external networks. Rather than processaples and expose a simpli t eTabl e interface to

ing the BGP updates at the switches, the switches simplyrovide the node configuration service to the DE. For
report them to the DE via the dissemination service, anGxample, when the DE decides to add or delete an IP
the DE implements the decision IOgiC for external routerouting or Ethernet forwarding table entry, it sends a
selection. The DE sends the appropriate eBGP repliegdd_t abl e_ent ry ordel et e_t abl e_ent ry com-

to the border switches, as well as configuring externainand through thew it eTabl e interface, and the
routes direCtly into all the switches via the disseminationdriver is responsib|e for trans|ating the command into
service. RCP [7] has already demonstrated that the ovegomponent-specific configurations. This allows the algo-
all approach of centralized BGP computation is feasibleithms plugged into the DE to implement network control
although they continue to use iBGP for backward com-jogic without dealing with the details of each data-plane

patibility with existing routers. component. We implemented three drivers and describe
It is important to note that an internal link or switch their details next.

failure in a Tesseract network does not lead to massivginux IP forwarding kernel: The Linux kernel can
updates of external routes being transmitted from the DEorward packets received from one network interface to
to the switches. The reason is that external routes idenanother. To determine the outgoing network interface,
tify only the egress points. External and internal routesthe Linux kernel uses two data structures: a Forward-
are maintained in two separate tables and are combingflg Information Base (FIB) that stores all routes, and
locally at switches to generate the full routing table. Thisg routing cache that speeds up route search. As in all
is identical to how OSPF and BGP computed routes arflesseract data plane drivers, the driver for Linux IP for-
combined today. In general, an internal link or switch warding kernel implements th& i t eTabl e interface.
failure does not change external routes and thus no upfhe driver interprets commands from the DE, creates a
date to them is necessary. rtentry structure with the route to add or delete, and
Bootstrapping end hosts: For backward compatibility, invokesthea oct | system call to modify the FIB. We set
end hosts do not directly participate in Tesseract discovpr oc/ sys/ net /i pv4/ rout e/ ni n_.del ay to zero
ery plane. so that the routing cache is flushed immediately after the
In networks running IP, the discovery plane acts as &IB is modified.
DHCP proxy. The DE configures each switch to tun-Click router: We use Click for forwarding Ethernet
nel DHCP requests to it via the dissemination serviceframes. The driver for Click includes two parts: an
Whenever a host transmits a DHCP request, the DEmplementation of theN i t eTabl e interface, and a
learns the MAC address and the connection point of theClick element package called th®Swi t ch that is inte-
host in the network. The DE can then assign the apprograted into Click. The implementation@f i t eTabl e
priate IP address and other configuration to the host.  parses commands and executes those commands by



exchanging control messages with the 4DSwitch ele- 100
ment in the Click process via a TCP channel. The ol
4DSwi t ch element maintains an Ethernet forwarding 70
table and updates the table according to the received con- 60
trol messages. To control the data forwarding behavior i§
of Click, the 4DSwi t ch element overrides the Click

El ement : : push function and directs incoming traf-

i
[/

30
20

Fraction of Experiments (%)

10 *
fic to the outgoing port(s) specified in tH#DSwWi t ch o B T B
. 0 50 100 150 200 250 300 350 400 450 500
fO rWard|ng table' Convergence Time (in ms)
neftfilter/iptables: Tesseract uses netffilter/iptables to Tesseract (single fink failures, enterprise) ——
1 ili H Fast OSPF (single link failures, enterprise) - -
implement reachability control in IP networks. The Fast OSPF (singe link failures, backbone) -~
Tesseract (single link failures, backbone a

driver for netfilter/iptables translates commands inte ipt

ables rules (e.g.; A FORWARD -s 10.1.1.0/24  Figure 4: CDF of convergence times for single link fail-
-d 10.1.2.0/24 -i ethO -j DROP) and forks ures in enterprise and backbone networks. We pick one
an iptables process to install the rules. link to fail at a time and we enumerate all the links
to get the distribution of convergence times. The zero
convergence times are caused by failures disconnecting
switches at the edge of the network.

In designing the interface between the decision plane and

the dissemination plane, there is a tension between thigottlenecks? How resilient is Tesseract in the presence
conflicting goals of creating a clean abstraction with rigid of decision-element failures?

separation of functionality and the goal of achieving high

performance with the cooperation of the decision and

dissemination planes. 4.1 Methodology

The key consideration is that the dissemination plangue perform both emulation and simulation experiments.
must be able to function independently of the decisionye yse Emulab to conduct intra-domain routing exper-
plane.  Our solution is to build into the dissemina- jments using two different topologies. The first topol-
tion plane a completely self-contained mechanism forOgy is an ISP backbone network (AS 3967) from Rock-
maintaining connectivity. This makes the dissemina-gife| [8] data that spans Japan, U.S., and Europe, with a
tion plane API very simple, giving the basic decision yaximum round trip delay of 250 ms. The other is a typ-

3.6 Decision/Dissemination Interface

pla_ne only three interfgce funct_iorﬁend( buf , _dSt ) > ical enterprise network with negligible propagation delay
which sends control information to a specific switch, fom our earlier study [9].
FI ood( buf ), which floods control information to all Emulab PCs have 4 interfaces each, so routers that

switches, andRegi st er UpCal | («func()), which  haye more than 4 interfaces are modeled by chaining to-
!der_mfles the decision plane function that handles INCOMyether PCs to create a “supernode” (e.g., a router with
ing information. _ 8interfaces will be represented by a string of 3 Emulab
However, to optimize the performance of the dis-pcs). As a result, the backbone network is emulated by
semination plane, we add two interface functionsijq4 pcs with 190 links, and the enterprise network is
Li nkFai | ure(link), which the DE uses to identify emyated by 40 PCs with 60 links. For each Tesseract
a known failed link to the dissemination plane so theexperiment, there are 5 decision elements — these run
dissemination plane can avoid it immediately, andg, “pc3000” machines that have a 3GHZ CPU and 2GB
Pref erredRoute(dst, sourceRoute), which ot RAM. To inject a link failure, we bring down the in-
the DE uses to suggest a specific source route for cakg face with the f conf i g down command. To inject

rying control information to switchist . This solution 5 gwjtch failure, we abruptly terminate all the relevant
enables a sophisticated DE to optimize the disseminatio@fware running on a switch.

plane to its liking, but also allows the simplest DE to
fully function.

So that we evaluate the worst-case behavior of the con-
trol plane, we measure the time required for drgire
network to reconverge after an event. We calculate this
4 Performance Evaluation network convergence time as the elapsed time between

the event occurring and the last forwarding state update
In this section, we evaluate Tesseract to answer the folbeing applied at the last switch to update. We use Emu-
lowing questions: How fast does a Tesseract-controlledab’s NTP (Network Time Protocol) servers to synchro-
network converge upon various network failures? Hownize the clocks of all the nodes to within 1 millisecond.
large a network can Tesseract scale to and what are the As a point for comparison, we present the performance



of anaggressively tune@®@SPF control plane called Fast
OSPF. Fast OSPF’s convergence time represents the best
possible performance achievable by OSPF and it is de-
termined by the time to detect a link failure and the one
way propagation delay required for the LSA flood. Such
uniform and aggressive tuning might not be practical in

Fraction of Experiments (%)

a real network as it could lead to CPU overload on older o %
0 50 100 150 200 250 300 350 400 450 500
routers, put Fast OSPF serves as a useful benchr_na_rk. Convergence Time (inms)
We implemented Fast OSPF by modifying TesSeract (gl e Talies, enterpse) ——
a1 - it 3 RS
Quagga 0.99.4 [10] to support millisecond timer o et OSPE (roional falures, BacKbonE) v
. . . Fast OSPF (single switch failures, backbone) @
intervals. There are four relevant timers in Quagga: Tesseract (regional failures, backbone) =
Tesseract (single switch failures, backbone) ---e--

(1) the hello timer that sets the frequency ofElH O
messages; (2) the dead timer that sets how long after thieigure 5. CDF of convergence times for single switch
last HELLO is received is the link declared dead; (3) the failures and regional failures.

delay timer that sets the minimum delay between receiv-

ing an LSA update and beginning routing computation;dynamic shortest path algorithm on different failed links.
and (4) the hold-down timer that sets the minimum |n the backbone network scenario, propagation delay
interval between successive routing computations. Fopecomes an important factor as switch-to-switch RTT
Fast OSPF, we use hello timer = 20 ms, dead timefanges from 1 ms to 250 ms. Tesseract's convergence
= 100 ms, delay timer = 10 ms (to ensure a receivedequires the link state update to be transmitted to the DE
LSA is flooded before routing computation begins), andand the new switch configurations to be transmitted back
0 ms for the hold-down timer. Tesseract uses the samg) the switches. On the other hand, Fast OSPF only re-
hello and dead timer values to make direct comparisofyuires the one-way flooding of the link state update. This
pOSSible. There is no need for the delay timer or tth Why Tesseract's convergence time is rough|y a one-
hold-down timer in Tesseract. way delay slower than Fast OSPF. In return, however,
the direct control paradigm enabled by Tesseract allows
other control functions, such as packet filtering, to be im-
plemented together with intra-domain routing in a simple
Common concerns with using a logically centralized DEand consistent manner.

to provide direct control are that reconvergence time willSwitch failures and regional failures: Next, we exam-
suffer or the DE will attempt to control the network us- ine the convergence time under single switch failures and
ing an out-of-date view of the network. To evaluate theseregional failures. To emulate regional failures, we divide
issues, we measure intra-domain routing convergence afhe backbone topology into 27 geographic regions with
ter single link failures, single switch failures, regional each region containing a mean of 7 and a maximum of
failures (i.e., simultaneous multiple switch failures in a 26 switches, and we simultaneously fail all switches in a
geographic region), and single link flapping. region.

Single link failures: Figure 4 shows the cumulative  Figure 5 compares the cumulative distributions of con-
distribution of convergence times of Tesseract and Fastergence times of Tesseract and Fast OSPF on switch and
OSPF for all single link failures in both topologies (Some regional failures. In the enterprise network, again, the
convergence times are 0 because the link failure parperformance of Tesseract is very similar to that of Fast
titioned a stub switch and no forwarding state update€OSPF. In the backbone network, the difference between
were required). First, consider the enterprise networklesseract and Fast OSPF is still dominated by network
scenario where the network propagation delay is negligidelay, and both are able to gracefully handle bursts of
ble. For Fast OSPF, which represents an ideal target fanetwork state changes. There are two additional points
convergencetime, its performance is primarily a functionto make. First, Fast OSPF has more cases where the con-
of the link failure detection time, which is controlled by vergence time is zero. This is because the 10 ms delay
the dead timer value (100 ms), and the time to computgimer in Fast OSPF is acting as a hold-down timer. As
and install new routes. Even though Tesseract has a sim& result, Fast OSPF does not react immediately to indi-
gle DE machine compute all the routes, its performancesidual link state updates for a completely failed switch
is nearly identical to that of Fast OSPF, thanks to the usand sometimes that can avoid unnecessary configuration
age of an efficient dynamic shortest path algorithm andcchanges. In Tesseract, there is no hold-down timer, so
the delta encoding of switch configurations. The only ob-it reacts to some link state updates that are ultimately
servable difference is that Tesseract’s convergence timmconsequential. Second, in some cases, Tesseract has
has a slightly larger variance due to the variability of thefaster convergence time in regional failure than in single

4.2 Routing Convergence



255

250 -

‘-

B
. . ’g
apn - t . - =
™ e g x A Py E s 10 q
£ 245 | . hele bt 8 Pl £
£ e WU Vel T = |
- + - A e A, 2
£ .. - -r * 3 4 3
+ 5
o L ]
2 a0f : ‘ " B + ‘ —
Q lpor e +h . - 3 § i
1 & » - - il w i kN i
g ¥ s - * bod % ‘ ! i
235 + - e n
+.
<0 B O

230

0 200 400 600 800 1000 1200

ICMP Sequence Number

108:153 141:393 161:328 315:972 1347:6224
Networks (#nodes : # edges)

79:147 87:161

Figure 6: Effects of link flapping on ICMP packets sent

at a rate of 100 packets/sec. Figure 7. CPU time for computing incremental short-

est paths for various Rocketfuel topologies in logarithmic
scale. The box shows the lower quartile, upper quartile

switch failure. The reason is that the large number ofand median. The whiskers show the min and max data
failed switches in regional failure reduces the amount ofvalues, out to 1.5 times the interquartile range, and out-
configuration updates Tesseract needs to send. liers are plotted as ‘+'s.

Link flapping: From the earliest days of routing in the

Internet there has been concern that a rapidlv flanpin We evaluate Tesseract’s scalability on a set of Rock-
. PIdly TappIngl o topologies with varying sizes. For each topology,
link could overload the control plane and cause a wide-

spread outage worse than the failure of that single IinkWe independently fail each link in the graph and measure

. . the time for the DE to compute new forwarding state and
Using Emulab we conduct an experiment to show thethe size of the state updates

effects of link flapping on the end-to-end behavior of : - . . .
. DE Computation Time: Every time a failure occurs in
Tesseract. On the emulated backbone networlk wegy O
the network, the decision element needs to recompute

the Tokyo node from the Amsterdam node at an interva ) .
. the forwarding tables for the switches based on the new
of 10 ms and measure the RTT. We start to flap the link .
. state of the network. Figure 7 shows the results of DE
between Santa Clara and Herndon 2 seconds into the eX-

periment. The flapping link is up for 100 ms and then path computation time. As shown in the figure, even in
' . the largest network of 1347 nodes and 6244 edges, the
down for 2 seconds. As the link flaps, the route from

Tokyo to Amsterdam oscillates between a 10-hop pathWorSt case recomputation time is 151 ms and the 99th
ercentile is 40 ms.

traverging Santa Clara, Herndon, Weehawken, and I‘Or‘['lgandwidth Overhead of Control Packets: Each time
don with an average RTT of 240 ms, and a 12-hop pat e DE computes new forwarding state for a switch, it

through San Jose a_md Qak Brookwith an average RTT 0needs to push out the new state to the switch. Figure 8
246 ms, as shown in Figure 6.

. . . plots the number of control bytes that the DE pushes out
This experiment demonstrates that a logically central

. . . or independent link failures with different topologies.
ized system like Tesseract can handle continual networ

. L s shown in the figure, the worst case bandwidth over-
changes. It is also worth mentioning that the Tesseraclgead is 4.4MB in the largest network of 1347 nodes and
decision plane makes it easy to plug in damping algo- )

: LT . ) 6244 edges. This is a scenario where 90% of the switches
rithms to handle this situation in a more intelligent way. must be updated with new state.

Notice that the bandwidth overhead reported here in-
cludes only intra-domain routes. Even when a Tesseract
network carries external BGP routes, the amount of for-
Another concern with a logically centralized system like warding state expected to change in response to an in-
Tesseract is can it scale to size of today’s networksternal link failure will be roughly the same. Switches
which often contain more than 1,000 switches. Sinceuse two-level routing tables, so even if default-free BGP
Emulab experiments are limited in size to at most a fewrouting tables are in use, the BGP routes only change
hundred switches, we perform several simulation experwhen the egress point for traffic changes — not when in-
iments to evaluate Tesseract’s scaling properties. Thigernal links fail. As has been pointed out by many [11, 7],
evaluation uses a DE running the same code and hardnternet routing stability would improve if networks did
ware as the previous evaluations, but its disseminatiomot change egress points solely because the local cost
plane is connected to another machine that simulates thehanged, and Tesseract's framework for direct control
control plane of the network. makes it easier to implement this logic.

4.3 Scaling Properties



10 . , , , , , , Data Center Front Office

=3 AD1 [ ] __A{]AR
10° ! metric=1 2] . AF2
- [ ap2 []
8 107, | 1 :
B 10 ﬁ S : : p— Location A
o o - ES | T | | ' .
§ ol = E‘ $ ! ! ! ! : Location B
g ! i | ! n ! ! BD1 [ ] |
%10: % ? : : n BD2 . metric=1 & = BE2
- i . _ _ _
Figure 9: Enterprise network with two locations, each
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ location with a front office and a data center. The dashed
79:147  87:161 108:153 141:393 161:328 315:972 1347:6224 . .
Networks (#inodes : # edges) link is added as an upgrade.

Figure 8: Switch configuration traffic sent out on a single . . . _
link failure for various Rocketfuel topologies in logarith - signers can intelligently select locations for placing re-
mic scale. dundant DEs to defend against network partition.

Min Mean Max SD . .
Backup DE takes over 130ms 142ms 155ms 6ms S5 Tesseract AppllC&tIOﬂS

Table 1: Minimum. mean. and maximum times. and !N this section, we demonstrate two applications that take

standard deviation for DE failover in DE failure exper- advantage of Tesseract's direct control paradigm.
iments on the backbone network.

5.1 Joint Control of Routing and Filtering

4.4 Response to DE Failure and Partition  Today, many enterprise networks configure packet fil-
. ) . » ters to control which hosts and services can reach each

This section evaluates decision plane resiliency by meaginer [9]. Unfortunately, errors in creating network con-

suring theDE failover time defined as the time from figyrations are rampant. The majority of disruptions in

when the master DE is partitioned to when a standby DE,etwork services can be traced to mis-configurations [12,
takes over and becomes the new master DE. We use the3]  The sjtuation with packet filters is especially

backbone network topology and perform 10 experimentg,ainfyl, as routes are automatically updated by routing
in which the master and stand-by DEs are 50 ms apart. yot0c0ls to accommodate topology changes, while there
DE failure: Failure of any DE but the master DE is jsno mechanism to automatically adapt packet filter con-
harmless, since in Tesseract the other DEs are hot stanfigurations.
byS. To evaluate the effect of the failure of the master The Tesseract approach makes joint routing and filter-
DE, we abruptly shutdown the master DE. Table 1 showsng easy. The decision logic takes as input a specifica-
the time required for a new DE to take control of the net-tjon of the desired security policy, which lists the pairs
work after the master DE fails. As expected, the averaggf source and destination subnets that should or should
failover time is approximately 140 ms, which can be de-not be allowed to exchange packets. Then, in addition
rived from a simple equation that describes the expectegh computing routes, for each source-destination subnet
failover time: (DE DeadT'ime + PropagationDelay —  pair that is prohibited from communicating, the DE ini-
HeartbeatInterval /2 = 100ms + 50ms — 10ms). tially places a packet filter to drop that traffic on the in-
Network partition: We inject a large number of link terface closest to the destination. The decision logic then
failures into the backbone topology to create scenariogurther optimizes filter placement by pulling the filters to-
with multiple network partitions. In the partition with wards the source of forbidden traffic and combining them
the original master DE, Tesseract responds in essentiallyntil further pulling would require duplicating the filters
the same manner as in the regional-failure scenarios ex- As a concrete example, consider the network in Fig-
amined in Section 4.2, since the original master DE seegre 9. This company’s network is spread across two loca-
the partition as a large number of link failures. In the par-tions, A and B. Each location has a number of front office
titions that do not contain the original master, the convercomputers used by sales agents (AF1-2 and BF1-2) and
gence time is the same as when the master DE fails.  a data center where servers are kept (AD1-2 and BD1-
Just as network designers can choose to build a topoR). Initially, the two locations are connected by a link
ogy that has the right level of resistance against networkbetween the front office routers, R2 and R4, over which
partition (e.g., a ring versus a complete graph), the deinter-office communications flow. The routing metric for



each link is shown in italics. Later, a dedicated link be-
tween the data centers (shown as a dashed line between
R1 and R3) is added so the data centers can use each
other as remote backup locations. The security policy
is that front-office computers can communicate with the
other location’s front office computers and with the lo-
cal data center’s servers, but not the data center of the
other location. Such policies are common in industries
like insurance, where the sales agents of each location

600

are effectively competing against each other. “*%m*
We experimentally compared the Tesseract-based so- 500 "
lution with a conventional solution that uses OSPF and ¢ , |
manually placed packet filters. During the experiments 3
we generate data traffic from AF1 to BF1 (which should 3 300}
be permitted) and from AF1 to BD1 (which should be %’
forbidden) at 240 packets per second and monitor forany & 2%°|
leaked or lost packets. In the OSPF network, the filter is 100 |
manually placed on interface i3.1 to prevent A's front of- —— RSTP
fice traffic from reaching BD. After allowing the routing Oy dp gm0 ToReRe
to stabilize, we add a new link between the data centers Time (sec)

(dotted line in Figure 9). In the OSPF network, OSPF re-gig ;e 11: Aggregate network throughput, RSTP versus
sponds to the additional link by recomputing routes andTesseract. S1 fails at 60 second.

redirects traffic from AF to BD over the new link, by-
passing the packet filter on interface i3.1 and creating a
security hole that will have to be patched by a human opthat follow the tree — this enables traditional tree-based
erator. In contrast, Tesseract computes both new routésroadcast. Additionally, when an end host sends its first
and new packet filter placements appropriate for thoseframe to its first-hop switch, the switch notifies the DE
routesand loads into the routers simultaneously, so noof the newly discovered end host via the dissemination
forbidden traffic is leaked. Most importantly, once the service. The DE then computes appropriate paths from
security policy is specified, it is automatically enforced all switches to that end host and adds the generated for-
with no human involvement required. warding entries to the switches. From then on, all frames
destined to the end host can be forwarded using the spe-
cific paths (e.g., shortest paths) instead of the spanning
tree.
Ethernet is a compelling layer-2 technology: large To experimentally illustrate the benefits of the Tesser-
switched Ethernets are often used in enterprise, data ceact approach, we use the topology shown in Figure 10 on
ter, and access networks. Its key features are: (1) &mulab. The four switches are connected by 100 Mbps
widely implemented frame format; (2) support for broad- Ethernet links, and each end host is connected to one
casting frames, which makes writing LAN services like switch via a 1 Gbps Ethernet link. We riiper f [17]
ARP, and DHCP significantly easier; and (3) its trans-TCP servers on the four end hosts and simultaneously
parent address learning model, which means hosts cagtart six TCP flows. They are H1 to H2, H1 to H3, H1
simply plug-and-play. Unfortunately, today’s Ethernetto H4, H2 to H3, H2 to H4, and H3 to H4. In the first
control plane is primitive [14, 15, 16]. Based on routing experiment, the network is controlled by Tesseract using
frames along a spanning tree of the switches, it makeshortest path as the routing policy. In the second experi-
very inefficient use of the available links. Convergencement, the network is controlled by an implementation of
time in response to failures can be long, as the IEEHEEE 802.1D RSTP on Click.
802.1D Rapid Spanning Tree Protocol (RSTP) is known Figure 11 shows the aggregated throughput of the net-
to count to infinity in common topologies. work for both experiments. With the Tesseract control
We have implemented a Tesseract control plane foplane, all six TCP flows are routed along the shortest
Ethernet that preserves all three beneficial propertiegpaths, and the aggregate throughput is 570 Mbps. At
avoids the pitfalls of a distributed spanning tree proto-time 60 s, switch S1 fails and H1 is cut off. The Tesser-
col, and improves performance. The DE first createsact system reacts quickly and the aggregate throughput
a spanning tree from the discovered network topologyof the remaining 3 TCP flows stabilizes at 280 Mbps. In
and generate default forwarding entries for the switchegontrast, in a conventional RSTP Ethernet control plane,

5.2 Link Cost Driven Ethernet Switching



6 Related Work

Previous position papers [19, 3] have laid down the
conceptual framework of 4D, and this paper provides
the details of an implementation and measured perfor-
mance. The Routing Control Platform (RCP) [7, 20]
and the Secure Architecture for the Networked Enter-
prise (SANE) [21] are the most notable examples that
Figure 12: Typical Ethernet topology gadget. share conceptual elements with 4D.

RCP is a solution for controlling inter-domain routing

forwarding is performed over a spanning tree with S1 adn IP networks. RCP computes the BGP routes for an
the root. This means the capacities of the S2-S3, S2Autonomous Systems (AS) at centralized servers to give
S4, and S3-S4 links are totally unused. As a resullt, théhe operators of transit networks more control over how
aggregate throughput of the RSTP controlled network i€8GP routing decisions are made. The RCP servers have
only 280 Mbps, a factor of two less than Tesseract. Wher@ Very similar role as the decision plane in 4D. For back-
switch S1 fails at time 60 s, RSTP tries to reconfigure thevard compatibility, the RCP servers use iBGP to com-
spanning tree to use S2 as the root and begins a count-tgiunicate with routers. This iBGP communication chan-
infinity. The combination of frame loss when ports oscil- el has a role similar to the dissemination plane in 4D.

late between forwarding/blocking state and TCP conges- SANE s a solution for enforcing security policies in
tion control back-off means the throughput does not re4p, enterprise network. In a SANE network, communica-
cover for many seconds. When RSTP has finally recontions between hosts are disabled unless they are explic-
verged, the aggregate throughput is again substantiallyy ajlowed by the domain controller. Switches only for-
less than the Tesseract network. ward packets that have authentic secure source routes at-
As a second example of the value of being able totached to them. For communications between switches
change the decision logic and the ease with which Tessegnd the domain controller, SANE constructs a spanning
act makes this possible, consider Figure 12. This topoltree rooted at the domain controller. This spanning tree

ogy gadget is a typical building block found in Ethernet has a role similar to the dissemination plane in Tesseract.

campus networks [18] which provides protection against T o9 | ; K
any single link failure. Basic Ethernet cannot take advan- empest [22] proposes an alternate framework for net-

tage of the capacities of the redundant links since RSlevork control, Where_ eaqh switch is diVi(,jEd "_“0 switch-
forms a spanning tree with S1 as the root, and the S2-sacts and the functionality of each switch is exposed
S3-S6, and S4-S6 links only provide backup paths an({]hrough a common interface called ArleI_. Tempest al-
are not used for data forwarding. As a result, traffic flows ows multiple control planes to operate independently,

from H2, H3, and H4 to R must share the capacity of link €ach controlling their own virtual network composed
S1-S5. In contrast, when there exists two or more equ f the switchlets, and the framework has been used on

cost paths from a source to a destination, the Tessera th MPLS and ATM data planes. Tesseract's dissem-

decision logic breaks the tie by randomly picking a path.ation plane provides a complete bootstrap solution,
By centralizing the route computations and using eveﬁ"’here Tempest's implementation a_ssu_med a pre-existing
such simple load-balancing heuristics, Tesseract is ab|H°'_°"er'ATM _network for_ commumcatlon_ with remote
to take advantage of the multiple paths and achieve awnches. While both projects abstract s_W|tch functional-
substantial increase in performance. In our example, thg,V’ Tegsere}ct dF’es not assume_that SW'tChe$ can be fully
capacities of both link S1-S5 and S1-S6 are fully utilized VI'tualized into independent switchlets, and it leaves re-
for a factor of two improvement in aggregate throughputS°urce allocation to the decision logic.
over RSTP. FIRE [23] presents a framework to ease the imple-
The examples in this section illustrate the benefit of thementation of distributed routing protocols by providing
direct control paradigm, where the only distributed func-a secure flooding mechanism for link-state data, hooks
tions to be implemented by network switches are thoséo which route computation algorithms can be attached,
that discover the neighborhood status at each switch anand a separate FIB used for downloading code into the
those that enable the control communications betweenouter. Tesseract eases the implementation of centralized
the DE and the switches. As a result, it becomes easpetwork control algorithms by assembling a network-
to design and change the decision logics that control thevide view, enabling direct control via a robust and self-
network. There is no need to design distributed protocol$ootstrapping dissemination plane, and providing redun-
that attempt to achieve the desired control policies. dancy through the election of DEs.




7 Summary [4]
This paper presents the design and implementation offs]
Tesseract, a network control plane that enables direct
control. In designing Tesseract, we paid particular at- [6]
tention to the robustness of the decision plane and the
dissemination plane. The security of Tesseract is en-
hanced by the mechanisms built into the dissemination!
service. The system is designed to be easily reusable
and we demonstrated how Tesseract can be used to con-
trol both Ethernet and IP services. Finally, good perfor- [g]
mance is achieved by adopting efficient algorithms like
incremental shortest path and delta encoding of switch(g]
configuration updates.

We find that Tesseract is sufficiently scalable to control
intra-domain routing in networks of more than one thou-[0!
sand switches, and its reconvergence time after a failure
is detected is on the order of one round-trip propagatioﬁll]
delay across the network.

The most important benefit of Tesseract is that it en-y)
ables direct control. Direct control means sophisticate
control policies can be implemented in a centralized; 3
fashion, which may be much easier to understand and
deploy than a distributed protocol. Direct control also
means the software running on each switch is simplified[14]
with potential benefits for operators and vendors. We
strongly believe that the direct control paradigm is the
right approach in the long run, as there is a clear trend tol1®!
wards ever more sophisticated network control policies.
Acknowledgments

Andy Myers contributed greatly to the early stages
of this project, and we would like to thank the anony- [17]
mous reviewers and our shepherd Jon Crowcroft for
helpful feedback on earlier versions of the paper. Thigig)
research was sponsored by the NSF under ITR Awards
ANI-0085920, ANI-0331653, and NeTS Grant CNS- [19]
0520187. Views and conclusions contained in this doc-
ument are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of Microsoft, NSF, or the U.S. gov- [20]
ernment.

[21]
References

[1] A. Shaikh and A. Greenberg, “Operations and managenfdft o
networks: What researchers should know,” August 2005. ACM
SIGCOMM Tutorial.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An integedt
experimental environment for distributed systems and orksy’

in Proc. Operating Systems Design and Implementappn255—
270, December 2002.

[3] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J.XRe
ford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D
approach to network control and managemeACM Computer
Communication RevievDctober 2005.

(22]

(2]
(23]

7] N. Feamster,

C. Demetrescu and G. F. Italiano, “A new approach to dyioaath
pairs shortest paths}. ACM vol. 51, no. 6, pp. 968-992, 2004.

A. Shamir, “How to share a secreCommunications of the ACM
vol. 22, no. 1, pp. 612-613, 1979.

D. Maughan, M. Schertler, M. Schneider, and J. Turnen- “|
ternet Security Association and Key Management Protocol
(ISAKMP).” RFC 2048, November 1998.

H. Balakrishnan, J. Rexford, A. Shaikh, and
J. van der Merwe, “The case for separating routing from msiite

in Proc. ACM SIGCOMM Workshop on Future Directions in Net-
work Architecture August 2004.

N. Spring, R. Mahajan, and D. Wetheral, “Measuring I1Spoio-
gies with RocketFuel,” ifProc. ACM SIGCOMMAugust 2002.

D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and
A. Greenberg, “Routing design in operational networks: éklo
from the inside,” inProc. ACM SIGCOMMAugust 2004.

“Quagga Software Routing Suite.”
http://ww. quagga. net .

R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dymécs of
hot-potato routing in IP networks,” iRroc. ACM SIGMETRICS
June 2004.

Z. Kerravala, “Configuration management delivers bess re-
siliency.” The Yankee Group, Nov 2002.

D. Oppenheimer, A. Ganapathi, and D. Patterson, “Whintk-
net services fail, and what can be done about itPrioc. USENIX
Symposium on Internet Technologies and Syst26as3.

A. Myers, T. S. E. Ng, and H. Zhang, “Rethinking the seevi
model: Scaling Ethernet to a million nodes,” froc. HotNets
November 2004.

R. Perlman, “Rbridges: Transparent routing,”Hroc. IEEE IN-
FOCOM March 2004.

] K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “On count-to-imify

induced forwarding loops in ethernet networks,”Roc. IEEE
INFOCOM, 2006.

“Iperf — The TCP/UDP Bandwidth Measurement Tool.”
http://dast.nlanr.net/Projects/|perf.

“Gigabit campus network design — principles and amsttiire.”
Cisco White Paper.

J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, My-
ers, G. Xie, J. Zhan, and H. Zhang, “Network-wide decision
making: Toward a wafer-thin control plane,” Proc. HotNets
pp. 59-64, November 2004.

M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. 8haand
Jacobus van der Merwe, “Design and implementation of a Rout-
ing Control Platform,” inProc. NSD) May 2005.

M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh
N. McKeown, and S. Shenker, “SANE: A protection architeetur
for enterprise networks,” ilVsenix SecurityAugust 2006.

S. Rooney, J. van der Merwe, S. Crosby, and I. Leslie,e“Th
Tempest: a framework for safe, resource assured, progratama
networks,”IEEE Communications Magazineol. 36, pp. 42-53,
Oct 1998.

C. Partridge, A. C. Snoeren, T. Strayer, B. SchwartzCwdndell,
and |. Castineyra, “FIRE: flexible intra-AS routing enviroant,”
in Proc. ACM SIGCOMM2000.



