Decongestion Control

Barath Raghavan and Alex C. Snoeren University of California, San Diego

Network resource sharing

1 Statistical multiplexing + buffers

2 Admission control + reservations

3 Decongestion control + coding

Sharing resources

	Implicit	Explicit
End-point	HighSpeed Vegas FAST TCP BIC Westwood Scalable	TFRC PCP
In-network	RED ECN AQM	WFQ RCP Admission Control XCP

Sharing resources

	Implicit	Explicit
End-point	HighSpeed Vegas FAS Backoff Westwood Scalable	Requestrand set PCP
In-network	RED Network hints AQM	WFQ RCP Ratesallocation XCP

Ignoring packet loss

1 A simple thought experiment

2 Decongestion control

3 Design considerations

Simple greedy transport

Decongestion control

Persistent network congestion is ok, if:

- End-to-end goodput is high
- End-to-end delay is low
- We maintain inter-user fairness

Decongestion control

Decongestion control

- Send packets as fast as possible
 - Aligned with end-host incentives
- Erasure code the data
 - Most/all packets received will be useful
 - Dynamically change coding rate
- Drop packets fairly at routers

Challenge: transmission

Design challenges

1) Setting transmission parameters

Sending data

Setting caravan size, c

- Tradeoff: coding overhead vs. latency
 - Bulk vs. interactive flows

Setting coding rate

- Estimate goodput with receiver feedback
 - Set coding rate accordingly
- Tradeoff: type of erasure code
 - Standard: Reed-Solomon
 - Rateless: LT codes, online codes
 - Simple: Redundancy
- Coding rate doesn't impact other flows
 - Provides stability of traffic demands

Setting flow allocation, f

- End host has limited bandwidth
 - Must apportion bandwidth to its flows
 - Still wants to be greedy

Challenge: long vs. short paths

Design challenges

Setting transmission parameters

2 Enforcing fairness at bottlenecks

Flow fairness

Idea:

Throttle flows to their fair-share at routers

Implementation:

- Use fair dropping rather than fair queueing
 - For example, Approximate Fair Dropping (AFD)

Long paths with fair dropping

Challenge: link wastage

Design challenges

Setting transmission parameters

2 Enforcing fairness at bottlenecks

Avoiding "dead packets"

Conjecture: few dead packets

Design challenges

Setting transmission parameters

2 Enforcing fairness at bottlenecks

Avoiding "dead packets"

Potential benefits

- High total end-to-end goodput
 - Network is always delivering coded data
- Small router buffer requirements
 - Traffic is not bursty or sensitive to loss
- Incentive compatibility
 - Aligned with greedy sender behavior
- Traffic stability
 - Only flow arrival/departure affects path demand

Questions!

