
Decoupling Connectivity from Routing

Karthik Lakshminarayanan Thomas Anderson Scott Shenker Ion Stoica David Wetherall
University of California, Berkeley and University of Washington

Abstract
To provide routing flexibility, that is, to accommodate vari-
ous performance and policy goals, routing protocols (such
as OSPF and EIGRP) include many complex knobs. Owing
to this complexity, protocols today do not adequately satisfy
their main goal—to provide connectivity between nodes in
the face of failures and misconfigured nodes. In this paper,
we ask the question of how one can design routing proto-
cols that are flexible, yet provide connectivity in the face of
failures and misconfigurations. To this end, we propose a dif-
ferent routing paradigm that decouples the task of providing
basic connectivity from sophisticated routing operations. We
propose an underlying Basic Connectivity Routing Protocol
(BCRP) that is robust to link failures and prevents miscon-
figured nodes from arbitrarily subverting traffic. Routing can
then be made flexible by layering sophisticated route selec-
tion on top of BCRP; these protocols fall back to BCRP when
failures are encountered.

1 Introduction
Arguably, the most important goal of routing protocols is to
provide connectivity, that is, two nodes should be able to com-
municate as long as there is a path in the underlying network.
To ensure connectivity, routing protocols need to rapidly de-
tect and recover from failures. Fast failure recovery is only
one aspect in ensuring connectivity; another important aspect
is robustness to malicious or misconfigured nodes. Even a sin-
gle misconfigured node can disrupt intra-domain connectivity
to a large extent. Indeed, there are documented cases of a sin-
gle misconfigured node causing disruption within an enter-
prise network [10].

In addition to connectivity, another property that both net-
work operators and users require of routing protocols is flex-
ibility, that is, the ability to accommodate a wide range of
policy and performance goals, and allow these goals to seam-
lessly change over time. To allow flexibility, router vendors
provide tens of complex knobs to configure routing protocols,
such as OSPF and Cisco’s EIGRP [1]. In fact, for OSPF, quite
a few knobs need to be manipulated for just getting the basic
protocol to work. This complexity not only makes these pro-
tocols prone to misconfigurations, but also complicates the
failure recovery mechanisms. Since failure recovery is tied
to the routing protocols, the recovery mechanisms are con-
strained by various policies and performance goals—for ex-
ample, to prevent oscillations, link-state protocols are con-

servative in detecting link and node failures, thus increasing
protocol convergence time after recovery. The problem is fur-
ther compounded by the fact that today’s routing protocols
pay little attention to dealing with malicious and misconfig-
ured routers.

In this paper, we ask the question of how one can design
routing protocols that are flexible, yet robust in the presence
of failures, misconfigurations, and malicious routers. To this
end, we propose a different approach of designing routing
protocols: instead of designing a single protocol that provides
both flexibility and connectivity, we separate these two goals.
We propose an underlying Basic Connectivity Routing Proto-
col (BCRP) that provides connectivity in the face of link fail-
ures, and prevents malicious (or misconfigured) nodes from
arbitrarily subverting network traffic. Sophisticated routing
protocols, tuned to various specific needs, can be layered on
top of BCRP; these protocols fall back to BCRP when fail-
ures are encountered. In this way, designers of routing proto-
cols can focus on the more complex demands while being as-
sured that basic connectivity is still being provided by BCRP.
In this paper, we restrict our exposition of BCRP to intra-
domain routing. Extending BCRP to inter-domain routing is
work-in-progress, but it appears that a similar approach can
be used there too.

BCRP is based on the assumption, which we believe holds
quite widely, that the installed set of links in a managed in-
frastructure (such as an ISP) is relatively stable. This informa-
tion can be authenticated and reliably transmitted by a cen-
tral administrative node to all the nodes periodically. Hence,
BCRP can rely on each node having a recent snapshot of
possibly available network links, which we term the consis-
tent map. To communicate failures in BCRP, we don’t rely
on inter-router messages but instead carry the encountered
link failures in the packet header. The route the packet takes
is computed using the consistent map minus the failed links
contained in the packet; hence, all nodes along the path of a
packet compute routes based on consistent information. Since
the list of failed links is monotonically non-decreasing, the
packet is guaranteed to reach the destination as long as a path
exists (modulo factors such as failure detection time).

In the next section, we present the BCRP algorithm and
illustrate its benefits. In Section 3, we present several tech-
niques that address efficiency and security issues in BCRP. In
Section 4, we present simple experiments using Rocketfuel
ISP topologies that suggest that BCRP is feasible. We con-
clude after listing some future directions in Section 6.

1

2 BCRP Algorithm

We present how BCRP works by elaborating the main design
ideas behind the protocol.

Decouple failure recovery from protocol convergence:
The main reason behind slow failure recovery in traditional
routing protocols is their monolithic design—a single pro-
tocol is responsible for ensuring protocol convergence when
link costs change as well as recovering from link failures. By
decoupling action on failure from normal routing behavior,
we can ensure that failure recovery is faster.

Such a decoupling is particularly beneficial because typ-
ically hints about link/node failure are known long before
failure actually is confirmed. For example, when higher-level
HELLO messages are used, a lost or a delayed HELLO mes-
sage could indicate failure, whereas a failure actually is con-
firmed only after multiple messages are lost (which consti-
tutes a timeout). Routing protocols send updates about fail-
ure only after confirmation of failure to prevent oscillations.
However, conservative action can be taken right after noticing
the first hint of a failure, thus reducing the vulnerability win-
dow. Being conservative does not hurt us much since we do
not inject this information into the routing protocol, but use it
locally to avoid the link that is potentially failed.

Centralized dissemination of link costs: The set of in-
stalled links in a managed infrastructure (such as ISP or en-
terprise network) are typically stable over time periods of
days. These links may go up and down from time to time, but
the “map” that describes a superset of the links being used
changes very slowly—only when physical links are added or
deleted. Moreover, this map is known to some central admin-
istrative node, which can authenticate and reliably dissem-
inate the network map, which we call the consistent map,
once every time T (perhaps once an hour). Now, all nodes
are guaranteed to have the same consistent map, a superset of
the network graph. In practice, the central node might remove
certain physical links when constructing the consistent map
to account for links that might have long down-times (such as
during periodic maintenance).

Failure information contained in packets: Packets con-
tain information about the failed links that are encountered,
i.e., when a packet routed based on the consistent map en-
counters a link that is failed (or potentially failed, based on
some detection algorithm), the link is added to the list of
failed links contained in the packet. The route is computed
based on the consistent map minus the failed links.

From these observations, it follows that all nodes make per-
packet routing decisions consistently, since everyone has the
same consistent map, and the remaining relevant information
(the list of failed links) is contained in the packet. Since each
packet is treated separately, the information contained in one
packet does not affect the forwarding of other packets. The
pseudocode for vanilla BCRP is presented in Figure 1.

Initialization: pkt.failed links = NULL
Packet Forwarding:

do
path = ComputePath(M − pkt.failed links)
if (path == NULL)

abort(“No path to destination”)
else if (path.next hop == FAILED)

pkt.failed links ∪= path.next hop
else

Forward(pkt, path.next hop)
while (! PacketForwarded)

Figure 1: Vanilla basic connectivity routing protocol.

2.1 Properties of BCRP

BCRP has two main properties. Since the properties are intu-
itive, we only present informal arguments why they hold.

Property 1. Guaranteed reachability: If link failures are
detected instantaneously, and there is a spanning subgraph
of the network graph that is connected for the entire time
a packet is in transit, then BCRP will successfully route the
packet.

Consider a packet destined for node D. Let’s say that
BCRP takes the path through nodes N1, N2, N3, hits a failed
link fα at N3, then gets routed through N4, N5, N6, hits a
failed link fβ and so on. All nodes between each consecu-
tive pair of failed links compute routes based on the same
state. For example, nodes N1, N2 and N3 would all route on
the complete consistent map, whereas nodes N4, N5 and N6

would route on the consistent map minus fα and so on.
When the node where a failed link is encountered (such

as N3 and N6) computes a route, there are two possibilities:
either there is no path to the destination in which case the
packet is dropped, or there is some path to the destination in
which case the new graph on which nodes compute the path
becomes smaller (i.e., it does not include the failed edge).1

With every new failed link encountered, the graph over
which the packet is routed monotonically becomes smaller.
Hence, if the underlying graph has a spanning connected sub-
graph for the entire time the packet is in transit, the packet
will reach the destination. In practice, packets would have
a TTL (Time-to-Live) associated with them to prevent very
long paths.

Property 2. Security property: As long as the “correct”
path of a packet does not traverse any malicious node, BCRP
will successfully route the packet. By correct path, we refer to
the path that would be taken if no node is malicious.

1If routers cannot hold on to the packet due to resource limita-
tions, packets might be dropped during the recomputation period.

2

In today’s protocols, malicious routers subvert a network
to cause more routes to flow through them. In BCRP, no link
information is exchanged between the nodes. Furthermore,
each packet is treated independently of other packets—only
failures that the packet encounters are taken into account for
computing the paths. Hence, a node not in the path that the
packet takes using BCRP cannot affect the fate of the packet.
While BCRP does not provide security guarantees that are as
strict as some earlier theoretical works (such as [3, 9, 13]),
it provides isolation: it restricts the damage that a malicious
node can cause to only the traffic it forwards. We contrast
BCRP with earlier work in more detail in Section 5.

2.2 Usage of BCRP

We briefly discuss how BCRP interacts with higher level pro-
tocols. All packets contain a 1-bit flag that indicates whether
the packet should be routed with BCRP. The protocols lay-
ered on top of BCRP explicitly invoke BCRP by setting the
flag. For simplicity, we assume that once the BCRP flag is
set, the packet will be routed using BCRP till the destination.
Each packet routed using BCRP carries BCRP-specific infor-
mation (such as the list of failed links) in a special header
called the BCRP header. The BCRP header can be imple-
mented as a layer-2.5 header, similar to MPLS.

BCRP can be invoked in many scenarios. When a source
wants the security property, it sets the flag on every packet
since the security property applies only to packets routed with
BCRP. For handling failures, if the higher layer protocol does
not have a route to the destination, it can hand over the packet
to BCRP. Alternatively, it can send a packet to BCRP and re-
quest BCRP routing only if the outbound link is detected as
“possibly failed” (as we noted earlier, BCRP can be less con-
servative in detecting failures). In addition, the BCRP header
provides useful diagnostic information to the network opera-
tors when failures occur.

3 Detailed Design of BCRP
We present techniques to reduce the overhead of the vanilla
BCRP algorithm. We also address two resource exhaustion
attacks on BCRP. We note that the techniques presented in
this section do not affect the two properties of BCRP. Due to
lack of space, we don’t present a detailed reasoning.

3.1 Reducing computational overhead

Vanilla BCRP requires path computation for every packet that
encounters a failure at every node that the packet traverses.
Supporting high link speeds with per-packet, per-node recom-
putation is infeasible.

3.1.1 Eliminating per-node route computation
To avoid computation at every node in the packet’s path, the
nodes where failures are encountered insert a source route to
the destination. Source routing between failures implies that

only nodes where the packets encounter failures need to per-
form any computation; all other nodes merely forward pack-
ets based on the source route. (Note that this mechanism does
not sacrifice the security property.)

Since source routes can potentially be long, we discuss
possible ways of reducing the overhead. Intuitively, after rout-
ing a packet a few hops away from the failed link (based on
consistent map minus the failed links), default routing based
on the consistent map alone would likely avoid the failed link.
Hence, nodes can possibly add the source route only till the
point from where the default route will take the packet to the
destination. Since the failed link is still added to the packet,
persistent loops don’t occur, and we don’t sacrifice the guar-
anteed reachability property.

3.1.2 Eliminating per-packet route computation

To eliminate per-packet recomputation at nodes where fail-
ures are encountered, nodes perform some simple precompu-
tation. Each node, in addition to maintaining the default for-
warding table (based on the consistent map), precomputes a
table for each of its outbound links that should be used when
that outbound link is failed. In other words, for every out-
bound link l, the node computes the forwarding table using
the consistent map minus the link l. However, in terms of the
actual forwarding state, such a precomputation only doubles
the memory requirement: for each destination, in addition to
the default path P computed using the consistent map, we
need to store the precomputed path computed using consis-
tent map minus lP , where lP is first hop in P .

When a packet encounters a failure at link l at this node, the
precomputed path Pl to the destination (using the consistent
map minus the link l) would be the desired path as long as Pl

does not contain a link l′ that belongs to the set of failed links
that the packet carries. If this constraint is not satisfied, re-
computation using the consistent map minus the failed links
(including l) is needed. When the fraction of failed links is
small, intuitively, the chance that a recomputation is triggered
is small. We later present some simulations using the Rocket-
fuel ISP topologies that support this intuition.

3.1.3 Reducing computation time

For performing recomputation, we borrow from the literature
on incremental recomputation [4,7]. Prior research has shown
that incremental recomputation can be performed within the
order of few milliseconds even for graphs with a thousand
nodes [2]. Performing recomputation within a few millisec-
onds is very reasonable since failure detection itself could
take that much time, and hence recomputation does not sub-
stantially worsen the vulnerability period.

Furthermore, since many of the incremental algorithms
construct shortest-path trees, the recomputation step yields
paths to all destinations. Hence, by saving this information,
the node can avoid recomputation for all future packets with
the same set of failed links irrespective of the destination.

3

3.2 Addressing security issues

Since BCRP introduces additional overhead on the routers
(such as route computation), we now discuss router resource
exhaustion attacks on BCRP. First of all, we note that a
network can prevent hosts outside the network from abus-
ing BCRP by having the edge (ingress) routers strip off any
BCRP headers when the packet enters the network.

Within a single network, in BCRP, two nodes do not ex-
change any protocol messages. The only information that is
exchanged between nodes is what is contained in the pack-
ets: a source route, and a set of failed links. The only opera-
tions that BCRP nodes perform are forwarding packets, and
recomputing routes. By manipulating both the pieces of in-
formation contained in the packet, a malicious node can make
the benign nodes waste its resources, in terms of forwarding
operations as well as recomputations.

3.2.1 Protection from source route manipulation
We consider attacks that a malicious router can perform by
manipulating source routes only. A node can inject pack-
ets with long source routes, thus wasting network resources.
Even with a TTL restriction (of, say, n), a router can make
each packet it generates consume n units of network re-
sources. A simple solution to detect this problem is statistical
checking of source routes in packets. Each node can check,
with a probability p, if the source route in the packet indeed
corresponds to what one would obtain using the consistent
map and the failure information in the packet.

Assume that a malicious source route is L hops long. The
probability that some node checks the route is (1− (1−p)L).
Since checking cannot be done at line speeds, p � 1, and
hence the probability ≈ (1 − (1 − Lp)) = Lp. Hence,
the expected number of malicious packets that would go
through before detection is 1/Lp, and the expected damage
is L × 1/Lp = 1/p. With L = 20 and p = 0.001, an attack
would be detected within 50 packets and would cause 1000
unnecessary forwarding operations in expectation.

When a node has detected that some node in the path is
malicious, there are many ways of reacting. In addition to
dropping such malicious packets, the node can simply raise
an alarm so that the network operator can debug the problem
further. Alternatively, the node can possibly send a message
to the node that forwarded the malicious packet requesting it
to check its packets more frequently.

3.2.2 Protection from failure header manipulation
By manipulating failure header, a malicious node can not
only construct long source routes, but also make a benign
router perform unnecessary recomputation. For example, in
Figure 2, node N1 forwards a packet destined to D to node
N2 with failure list containing the edge N4−D. Since the de-
fault next hop N2−N3 is failed and the precomputed path
N2−N4−D has a failed link N4−D, N2 needs to perform a
recomputation. Recomputation is triggered at a node N only

DS

N1 N2

N3

N4

N5

Recomputation at N2

0.5

1

1.5

Figure 2: Node N2 gets packet from N1 with a failure list contain-
ing the edge (N4,D). All unlabeled edges have unit weight.

if (a) the next-hop at N based on the packet’s source route is
failed, and (b) the precomputed path to destination that does
not use the failed link contains a link that belongs to the set
of failed links carried in the packet. Due to these constraints
the recomputation attack is not easy to launch.

The node N2 can now verify that it is possible to reach N2
from the source of the packet when the failures that the packet
enumerates are encountered. In the example, by emulating
BCRP, N2 can detect that the packet could not have encoun-
tered the link N4−D. Once a malicious attempt is detected,
reaction can be similar to that described above. Since this de-
tection mechanism could involve a few recomputations, the
check can be done only probabilistically to share the recom-
putation resources with the route recomputation mechanisms
involved in packet forwarding.

However, one can construct graphs in which malicious
recomputation attempts are legitimately possible too—the
probabilistic checking will not detect these. In such cases, if
the node does not have recomputation resources, it would just
send on the precomputed path (using M − Failed Link At N)
and add Failed Link At N to the packet header. If this packet
reaches the attacker again before hitting the link that is faked
as failed, then it is equivalent to the attacker generating a fresh
packet. If not, the node whose link was added by attacker will
detect the attack and would raise an alarm.

4 Feasibility of BCRP
In this section, using ISP topologies from the Rocketfuel
study [11], we present preliminary results that suggest that
BCRP is feasible for intra-domain topologies.2 Experiments
were performed with five ISP backbone topologies; however,
we report only a representative sample (we include the AS
numbers from the Rocketfuel data). For the link weights, we
used the inferred link weights from the Rocketfuel study [6].
The topologies had a few hundred routers, with a network di-
ameter in the range 9 − 16, and average path length in the
range 4−6. In all the experiments, we failed between 1% and
10% of the links uniformly at random, and studied the dif-
ferent metrics of interest. Since we didn’t have access to the

2Since we do not (yet) have detailed ISP failure data, we couldn’t
perform a more detailed evaluation.

4

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

M
ax

/A
vg

 n
um

 fa
ile

d
lin

ks
 p

er
 fa

ile
d

pa
th

Fraction of failed edges

AS 1221 (Max)
AS 1755 (Max)
AS 6461 (Max)
AS 1221 (Avg)
AS 1755 (Avg)
AS 6461 (Avg)

Figure 3: Average/Maximum number of failed links encountered
by a packet, restricted to packets that encounter at least one failure,
as a fraction of failed links.

actual traffic matrices, all experiments were performed for all
pairs communication, and results averaged over 20 runs.

BCRP introduces extra overhead only for packets that en-
counter a failed link. The overhead can be classified into: (a)
packet header overhead, since failed links as well as source
routes are carried, (b) recomputation overhead, and (c) net-
work overhead, i.e., extra cost of routing the packet.

Packet overhead. In BCRP, the failed links that the packet
encounters are carried in the packet header. To evaluate the
extra space needed, we plotted the average and maximum
number of failed links (for packets that encounter at least one
failure) as a function of the fraction of failed edges (see Fig-
ure 3). The average number of failed links per path is only
around two even when 10% of the links are failed. The maxi-
mum number of failed links is understandably higher, but less
than 10 for the same failure rate. Assuming that two bytes are
needed to represent a node ID (this would allow a network of
65536 nodes), the average and maximum per-packet overhead
are 16 and 40 bytes, respectively, even for 10% link failures.
Note that 10% link failures is an extremely high failure rate,
and we expect failures in managed ISP networks to be much
smaller in practice.

In addition to failed links, packets also carry source routes
to reduce computation overhead. Since the average path
length in the topologies we used is about 6, and the diameter
is about 15, the average and maximum overhead for packets
that encounter failures are 12 and 30 bytes, respectively.

Recomputation overhead. Figure 4 plots the maximum
number of recomputations that are needed averaged over all
the nodes in the network. (Note that some nodes perform
more recomputations than others.) Since all possible paths are
considered, this number presents an upper-bound on the ac-
tual number of recomputations that would be needed given
a certain traffic demand. The results show that for up to 5%
failure rate, recomputations are almost never needed (the av-
erage number of recomputations per node is under 0.5 over
all pairs communication). Recomputations are needed only

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
ve

ra
ge

 n
um

be
r

of
 r

ec
om

pu
ta

tio
ns

 p
er

 n
od

e

Fraction of links that are failed

AS 1221
AS 1755
AS 3257
AS 3967
AS 6461

Figure 4: Mean number of recomputations needed per node (for all
possible paths in the graph) as a function of fraction of failed links.

rarely because: (a) precomputed paths provide the route to
the destination in most cases, and (b) precomputed state is
saved for future packets. The number increases super-linearly
with the failure rate since the different possible combinations
of failed links grows combinatorially.

Routing overhead. Since BCRP learns link failures as the
packet is routed, the routes that packets routed with BCRP
take would be sub-optimal compared to those computed by
an oracle that knows all failure information. Figure 5 (top)
plots the CDF of the stretch that BCRP introduces relative
to this oracle. We only consider the paths in which failure
was encountered; in other cases, the stretch is trivially 1. For
about 90% of the BCRP routed paths, the stretch is lower
than 1.5, and the maximum value is under 4. The scatterplot
of the stretch plotted against the oracle-computed distance
in Figure 5(bottom) shows that most of the large values of
stretch are caused only by short, low-cost paths. This result
is promising since the actual additional cost imposed by such
short paths is anyway low.

5 Related Work
We separate related work into two parts: those that address
failure recovery in routing protocols, and those that provide
guarantees on secure routing.

There have been several efforts to provide fast fail-over.
In fact, the idea of decoupling failure recovery from protocol
convergence is not new. There are several works—such as
IP restoration [5], MPLS Fast-Reroute [8], etc.—that propose
having precomputed backup routes which can be used when
primary paths in the network fail. However, backup routes are
practical only for single failure scenarios; to achieve the guar-
anteed reachability property of BCRP with multiple failures,
many backup paths would be needed. In contrast, BCRP pro-
vides a graceful way of handling multiple link failures; indeed
from our experiments, we see that even with a failure rate of
1%, multiple failures can occur in real networks.

Some efforts have addressed failure recovery directly at
the level of routing protocol. For instance, Alaettinoglu et.

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3

C
D

F

Cost of BCRP/Cost of best path (taking failures into account)

AS 1221
AS 1755
AS 3257
AS 3967
AS 6461

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

S
ca

tte
rp

lo
t o

f B
C

R
P

-c
os

t/B
es

t-
pa

th
-c

os
t

Cost of best path (taking failures into account)

AS 1221

Figure 5: Top: CDF of the BCRP stretch (ratio of cost of BCRP
to the cost of the best possible path in the graph with failed links
removed). Bottom: Scatterplot of the same ratio, with cost of best
possible path in the x-axis. This plot shows that the ratio is high only
for very short, low-cost, paths, and longer paths incur low stretch.

al. [2] propose how IGP implementations can be cranked up
to reduce convergence time to a few milliseconds even when
links fail. However, such tweaks are restricted by protocol
constraints—for example, arbitrarily reducing the timer val-
ues for detecting change in link status could potentially make
routes oscillate due to false positives in detecting failed links.
Furthermore, adjusting link weights in OSPF can temporarily
destabilize the network, even with fast convergence, because
often multiple weights need to be adjusted simultaneously.

There has been lot of theoretical research on achieving reli-
able communication in the presence of byzantine faults (such
as [3, 9, 13]). However, these protocols have high overhead,
and are not practical at high link speeds. Much of the re-
cent research on secure routing has been directed at BGP
in particular. In contrast to these works, BCRP leverages a
practical assumption—that a centralized node can transmit
the consistent map to all nodes—to achieve its security prop-
erty. BCRP’s data path involves no cryptographic operations;
the reliable transmission of the consistent map requires some
cryptographic operations, but the process is infrequent. While
the security property of BCRP is less strict than those offered
by some prior theoretical works, we believe that BCRP is use-
ful in practice, as it restricts the damage caused by a malicious
node to only the traffic that the node itself forwards.

6 Conclusion
In this paper, we proposed the separation of the two impor-
tant goals of routing—connectivity and flexibility. The cen-
tral idea is that an underlying protocol (Basic Connectivity
Routing Protocol or BCRP) provides connectivity in the face
of failures as well as misconfigured (or malicious) nodes. So-
phisticated routing protocols (such as OSPF, EIGRP, etc.) can
be layered on top of BCRP.

We present some experimental results using Rocketfuel
data that suggest that BCRP is practical. However, there are
many more dimensions to evaluate and understand BCRP. We
are currently working to get detailed failure data from an ISP
in order to study how useful BCRP is in practice. Theoreti-
cally understanding how much BCRP benefits based on the
properties of the graphs would also be useful.

In this paper, we discussed the applicability of BCRP to
intra-domain routing. We are currently exploring how to ex-
tend BCRP to inter-domain routing. The fact that the key ob-
servations from intra-domain case have analogues in the inter-
domain case—that the AS graph changes infrequently, that
AS-relationships can be published globally since they can be
inferred anyway [12]3—gives one hope.

References
[1] NANOG Mailing List Archives. http://www.merit.

edu/mail.archives/nanog/.
[2] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards Millisecond

IGP Convergence. IETF Draft, 2000.
[3] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Secure

Message Transmission. Journal of the ACM, 1993.
[4] P. Franciosa, D. Frigioni, and R. Giaccio. Semi-dynamic short-

est paths and breath-first search in digraphs. In STACS, 1997.
[5] G. Iannaccone, C. Chuah, S. Bhattacharyya, and C. Diot. Fea-

sibility of IP Restoration in a Tier-1 Backbone. IEEE Net-
works, Special Issue, March 2004.

[6] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Infer-
ring Link Weights using End-to-End Measurements. In Proc.
IMW, 2002.

[7] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng. New Dynamic Algo-
rithms for Shortest Path Tree Computation. IEEE/ACM Trans-
actions on Networking, 2000.

[8] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to
RSVP-TE for LSP Tunnels. RFC 4090, May 2005.

[9] R. Perlman. Network Layer Protocols with Byzantine Robust-
ness. PhD thesis, MIT, 1988.

[10] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Got-
tlieb. A Case Study of OSPF Behavior in a Large Enterprise
Network. In Proc. IMW, 2002.

[11] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP
Topologies with Rocketfuel. In Proc. of SIGCOMM, 2002.

[12] L. Subramanian, M. Caesar, C.-T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. HLP: A Next-generation Interdo-
main Routing Protocol. In Proc. SIGCOMM, 2005.

[13] L. Subramanian, R. H. Katz, V. Roth, S. Shenker, and I. Stoica.
Reliable Broadcast in Unknown Fixed Identity Networks. In
Proc. PODC, 2005.

3There is incentive for ASes to publish peering information,
since otherwise, those links would not be used by BCRP.

6

